Copied to
clipboard

G = C11⋊F5order 220 = 22·5·11

The semidirect product of C11 and F5 acting via F5/D5=C2

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C11⋊F5, C551C4, C5⋊Dic11, D5.D11, (D5×C11).1C2, SmallGroup(220,10)

Series: Derived Chief Lower central Upper central

C1C55 — C11⋊F5
C1C11C55D5×C11 — C11⋊F5
C55 — C11⋊F5
C1

Generators and relations for C11⋊F5
 G = < a,b,c | a11=b5=c4=1, ab=ba, cac-1=a-1, cbc-1=b3 >

5C2
55C4
5C22
11F5
5Dic11

Character table of C11⋊F5

 class 124A4B511A11B11C11D11E22A22B22C22D22E55A55B55C55D55E55F55G55H55I55J
 size 15555542222210101010104444444444
ρ11111111111111111111111111    trivial
ρ211-1-1111111111111111111111    linear of order 2
ρ31-1i-i111111-1-1-1-1-11111111111    linear of order 4
ρ41-1-ii111111-1-1-1-1-11111111111    linear of order 4
ρ522002ζ118113ζ111011ζ119112ζ117114ζ116115ζ111011ζ119112ζ117114ζ116115ζ118113ζ118113ζ119112ζ119112ζ111011ζ111011ζ118113ζ116115ζ117114ζ117114ζ116115    orthogonal lifted from D11
ρ622002ζ111011ζ117114ζ118113ζ116115ζ119112ζ117114ζ118113ζ116115ζ119112ζ111011ζ111011ζ118113ζ118113ζ117114ζ117114ζ111011ζ119112ζ116115ζ116115ζ119112    orthogonal lifted from D11
ρ722002ζ117114ζ116115ζ111011ζ119112ζ118113ζ116115ζ111011ζ119112ζ118113ζ117114ζ117114ζ111011ζ111011ζ116115ζ116115ζ117114ζ118113ζ119112ζ119112ζ118113    orthogonal lifted from D11
ρ822002ζ119112ζ118113ζ116115ζ111011ζ117114ζ118113ζ116115ζ111011ζ117114ζ119112ζ119112ζ116115ζ116115ζ118113ζ118113ζ119112ζ117114ζ111011ζ111011ζ117114    orthogonal lifted from D11
ρ922002ζ116115ζ119112ζ117114ζ118113ζ111011ζ119112ζ117114ζ118113ζ111011ζ116115ζ116115ζ117114ζ117114ζ119112ζ119112ζ116115ζ111011ζ118113ζ118113ζ111011    orthogonal lifted from D11
ρ102-2002ζ111011ζ117114ζ118113ζ116115ζ119112117114118113116115119112111011ζ111011ζ118113ζ118113ζ117114ζ117114ζ111011ζ119112ζ116115ζ116115ζ119112    symplectic lifted from Dic11, Schur index 2
ρ112-2002ζ118113ζ111011ζ119112ζ117114ζ116115111011119112117114116115118113ζ118113ζ119112ζ119112ζ111011ζ111011ζ118113ζ116115ζ117114ζ117114ζ116115    symplectic lifted from Dic11, Schur index 2
ρ122-2002ζ117114ζ116115ζ111011ζ119112ζ118113116115111011119112118113117114ζ117114ζ111011ζ111011ζ116115ζ116115ζ117114ζ118113ζ119112ζ119112ζ118113    symplectic lifted from Dic11, Schur index 2
ρ132-2002ζ119112ζ118113ζ116115ζ111011ζ117114118113116115111011117114119112ζ119112ζ116115ζ116115ζ118113ζ118113ζ119112ζ117114ζ111011ζ111011ζ117114    symplectic lifted from Dic11, Schur index 2
ρ142-2002ζ116115ζ119112ζ117114ζ118113ζ111011119112117114118113111011116115ζ116115ζ117114ζ117114ζ119112ζ119112ζ116115ζ111011ζ118113ζ118113ζ111011    symplectic lifted from Dic11, Schur index 2
ρ154000-14444400000-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ164000-1119+2ζ112118+2ζ113116+2ζ1151110+2ζ11117+2ζ1140000053ζ11953ζ11252ζ11952ζ112119ζ54ζ11654ζ1155ζ1165ζ11511554ζ11654ζ1155ζ1165ζ115116ζ53ζ11853ζ11352ζ11852ζ11311353ζ11853ζ11352ζ11852ζ11311854ζ11954ζ1125ζ1195ζ11211953ζ11753ζ11452ζ11752ζ114117ζ53ζ111053ζ1152ζ111052ζ111153ζ111053ζ1152ζ111052ζ11111054ζ11754ζ1145ζ1175ζ114117    complex faithful
ρ174000-11110+2ζ11117+2ζ114118+2ζ113116+2ζ115119+2ζ1120000053ζ111053ζ1152ζ111052ζ111110ζ53ζ11853ζ11352ζ11852ζ11311353ζ11853ζ11352ζ11852ζ11311853ζ11753ζ11452ζ11752ζ11411754ζ11754ζ1145ζ1175ζ114117ζ53ζ111053ζ1152ζ111052ζ111153ζ11953ζ11252ζ11952ζ112119ζ54ζ11654ζ1155ζ1165ζ11511554ζ11654ζ1155ζ1165ζ11511654ζ11954ζ1125ζ1195ζ112119    complex faithful
ρ184000-1117+2ζ114116+2ζ1151110+2ζ11119+2ζ112118+2ζ1130000054ζ11754ζ1145ζ1175ζ11411753ζ111053ζ1152ζ111052ζ111110ζ53ζ111053ζ1152ζ111052ζ111154ζ11654ζ1155ζ1165ζ115116ζ54ζ11654ζ1155ζ1165ζ11511553ζ11753ζ11452ζ11752ζ11411753ζ11853ζ11352ζ11852ζ11311853ζ11953ζ11252ζ11952ζ11211954ζ11954ζ1125ζ1195ζ112119ζ53ζ11853ζ11352ζ11852ζ113113    complex faithful
ρ194000-11110+2ζ11117+2ζ114118+2ζ113116+2ζ115119+2ζ11200000ζ53ζ111053ζ1152ζ111052ζ111153ζ11853ζ11352ζ11852ζ113118ζ53ζ11853ζ11352ζ11852ζ11311354ζ11754ζ1145ζ1175ζ11411753ζ11753ζ11452ζ11752ζ11411753ζ111053ζ1152ζ111052ζ11111054ζ11954ζ1125ζ1195ζ11211954ζ11654ζ1155ζ1165ζ115116ζ54ζ11654ζ1155ζ1165ζ11511553ζ11953ζ11252ζ11952ζ112119    complex faithful
ρ204000-1118+2ζ1131110+2ζ11119+2ζ112117+2ζ114116+2ζ11500000ζ53ζ11853ζ11352ζ11852ζ11311354ζ11954ζ1125ζ1195ζ11211953ζ11953ζ11252ζ11952ζ112119ζ53ζ111053ζ1152ζ111052ζ111153ζ111053ζ1152ζ111052ζ11111053ζ11853ζ11352ζ11852ζ113118ζ54ζ11654ζ1155ζ1165ζ11511554ζ11754ζ1145ζ1175ζ11411753ζ11753ζ11452ζ11752ζ11411754ζ11654ζ1155ζ1165ζ115116    complex faithful
ρ214000-1117+2ζ114116+2ζ1151110+2ζ11119+2ζ112118+2ζ1130000053ζ11753ζ11452ζ11752ζ114117ζ53ζ111053ζ1152ζ111052ζ111153ζ111053ζ1152ζ111052ζ111110ζ54ζ11654ζ1155ζ1165ζ11511554ζ11654ζ1155ζ1165ζ11511654ζ11754ζ1145ζ1175ζ114117ζ53ζ11853ζ11352ζ11852ζ11311354ζ11954ζ1125ζ1195ζ11211953ζ11953ζ11252ζ11952ζ11211953ζ11853ζ11352ζ11852ζ113118    complex faithful
ρ224000-1116+2ζ115119+2ζ112117+2ζ114118+2ζ1131110+2ζ110000054ζ11654ζ1155ζ1165ζ11511653ζ11753ζ11452ζ11752ζ11411754ζ11754ζ1145ζ1175ζ11411753ζ11953ζ11252ζ11952ζ11211954ζ11954ζ1125ζ1195ζ112119ζ54ζ11654ζ1155ζ1165ζ11511553ζ111053ζ1152ζ111052ζ111110ζ53ζ11853ζ11352ζ11852ζ11311353ζ11853ζ11352ζ11852ζ113118ζ53ζ111053ζ1152ζ111052ζ1111    complex faithful
ρ234000-1116+2ζ115119+2ζ112117+2ζ114118+2ζ1131110+2ζ1100000ζ54ζ11654ζ1155ζ1165ζ11511554ζ11754ζ1145ζ1175ζ11411753ζ11753ζ11452ζ11752ζ11411754ζ11954ζ1125ζ1195ζ11211953ζ11953ζ11252ζ11952ζ11211954ζ11654ζ1155ζ1165ζ115116ζ53ζ111053ζ1152ζ111052ζ111153ζ11853ζ11352ζ11852ζ113118ζ53ζ11853ζ11352ζ11852ζ11311353ζ111053ζ1152ζ111052ζ111110    complex faithful
ρ244000-1119+2ζ112118+2ζ113116+2ζ1151110+2ζ11117+2ζ1140000054ζ11954ζ1125ζ1195ζ11211954ζ11654ζ1155ζ1165ζ115116ζ54ζ11654ζ1155ζ1165ζ11511553ζ11853ζ11352ζ11852ζ113118ζ53ζ11853ζ11352ζ11852ζ11311353ζ11953ζ11252ζ11952ζ11211954ζ11754ζ1145ζ1175ζ11411753ζ111053ζ1152ζ111052ζ111110ζ53ζ111053ζ1152ζ111052ζ111153ζ11753ζ11452ζ11752ζ114117    complex faithful
ρ254000-1118+2ζ1131110+2ζ11119+2ζ112117+2ζ114116+2ζ1150000053ζ11853ζ11352ζ11852ζ11311853ζ11953ζ11252ζ11952ζ11211954ζ11954ζ1125ζ1195ζ11211953ζ111053ζ1152ζ111052ζ111110ζ53ζ111053ζ1152ζ111052ζ1111ζ53ζ11853ζ11352ζ11852ζ11311354ζ11654ζ1155ζ1165ζ11511653ζ11753ζ11452ζ11752ζ11411754ζ11754ζ1145ζ1175ζ114117ζ54ζ11654ζ1155ζ1165ζ115115    complex faithful

Smallest permutation representation of C11⋊F5
On 55 points
Generators in S55
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)
(1 21 32 43 54)(2 22 33 44 55)(3 12 23 34 45)(4 13 24 35 46)(5 14 25 36 47)(6 15 26 37 48)(7 16 27 38 49)(8 17 28 39 50)(9 18 29 40 51)(10 19 30 41 52)(11 20 31 42 53)
(2 11)(3 10)(4 9)(5 8)(6 7)(12 30 45 41)(13 29 46 40)(14 28 47 39)(15 27 48 38)(16 26 49 37)(17 25 50 36)(18 24 51 35)(19 23 52 34)(20 33 53 44)(21 32 54 43)(22 31 55 42)

G:=sub<Sym(55)| (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,21,32,43,54)(2,22,33,44,55)(3,12,23,34,45)(4,13,24,35,46)(5,14,25,36,47)(6,15,26,37,48)(7,16,27,38,49)(8,17,28,39,50)(9,18,29,40,51)(10,19,30,41,52)(11,20,31,42,53), (2,11)(3,10)(4,9)(5,8)(6,7)(12,30,45,41)(13,29,46,40)(14,28,47,39)(15,27,48,38)(16,26,49,37)(17,25,50,36)(18,24,51,35)(19,23,52,34)(20,33,53,44)(21,32,54,43)(22,31,55,42)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,21,32,43,54)(2,22,33,44,55)(3,12,23,34,45)(4,13,24,35,46)(5,14,25,36,47)(6,15,26,37,48)(7,16,27,38,49)(8,17,28,39,50)(9,18,29,40,51)(10,19,30,41,52)(11,20,31,42,53), (2,11)(3,10)(4,9)(5,8)(6,7)(12,30,45,41)(13,29,46,40)(14,28,47,39)(15,27,48,38)(16,26,49,37)(17,25,50,36)(18,24,51,35)(19,23,52,34)(20,33,53,44)(21,32,54,43)(22,31,55,42) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55)], [(1,21,32,43,54),(2,22,33,44,55),(3,12,23,34,45),(4,13,24,35,46),(5,14,25,36,47),(6,15,26,37,48),(7,16,27,38,49),(8,17,28,39,50),(9,18,29,40,51),(10,19,30,41,52),(11,20,31,42,53)], [(2,11),(3,10),(4,9),(5,8),(6,7),(12,30,45,41),(13,29,46,40),(14,28,47,39),(15,27,48,38),(16,26,49,37),(17,25,50,36),(18,24,51,35),(19,23,52,34),(20,33,53,44),(21,32,54,43),(22,31,55,42)]])

C11⋊F5 is a maximal subgroup of   F5×D11
C11⋊F5 is a maximal quotient of   C55⋊C8

Matrix representation of C11⋊F5 in GL4(𝔽661) generated by

0100
66048600
0001
00660486
,
5246336600
281360660
1000
0100
,
1000
48666000
1372813728
510524510524
G:=sub<GL(4,GF(661))| [0,660,0,0,1,486,0,0,0,0,0,660,0,0,1,486],[524,28,1,0,633,136,0,1,660,0,0,0,0,660,0,0],[1,486,137,510,0,660,28,524,0,0,137,510,0,0,28,524] >;

C11⋊F5 in GAP, Magma, Sage, TeX

C_{11}\rtimes F_5
% in TeX

G:=Group("C11:F5");
// GroupNames label

G:=SmallGroup(220,10);
// by ID

G=gap.SmallGroup(220,10);
# by ID

G:=PCGroup([4,-2,-2,-5,-11,8,146,102,3203]);
// Polycyclic

G:=Group<a,b,c|a^11=b^5=c^4=1,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^3>;
// generators/relations

Export

Subgroup lattice of C11⋊F5 in TeX
Character table of C11⋊F5 in TeX

׿
×
𝔽