Copied to
clipboard

G = F5×D11order 440 = 23·5·11

Direct product of F5 and D11

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: F5×D11, D55⋊C4, D5.1D22, C55⋊(C2×C4), C5⋊(C4×D11), C11⋊F5⋊C2, (C5×D11)⋊C4, (C11×F5)⋊C2, C111(C2×F5), (D5×D11).C2, (D5×C11).C22, SmallGroup(440,43)

Series: Derived Chief Lower central Upper central

C1C55 — F5×D11
C1C11C55D5×C11D5×D11 — F5×D11
C55 — F5×D11
C1

Generators and relations for F5×D11
 G = < a,b,c,d | a5=b4=c11=d2=1, bab-1=a3, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
11C2
55C2
5C4
55C4
55C22
11D5
11C10
5C22
5D11
55C2×C4
11F5
11D10
5D22
5C44
5Dic11
11C2×F5
5C4×D11

Smallest permutation representation of F5×D11
On 55 points
Generators in S55
(1 21 32 43 54)(2 22 33 44 55)(3 12 23 34 45)(4 13 24 35 46)(5 14 25 36 47)(6 15 26 37 48)(7 16 27 38 49)(8 17 28 39 50)(9 18 29 40 51)(10 19 30 41 52)(11 20 31 42 53)
(12 23 45 34)(13 24 46 35)(14 25 47 36)(15 26 48 37)(16 27 49 38)(17 28 50 39)(18 29 51 40)(19 30 52 41)(20 31 53 42)(21 32 54 43)(22 33 55 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)(45 51)(46 50)(47 49)(52 55)(53 54)

G:=sub<Sym(55)| (1,21,32,43,54)(2,22,33,44,55)(3,12,23,34,45)(4,13,24,35,46)(5,14,25,36,47)(6,15,26,37,48)(7,16,27,38,49)(8,17,28,39,50)(9,18,29,40,51)(10,19,30,41,52)(11,20,31,42,53), (12,23,45,34)(13,24,46,35)(14,25,47,36)(15,26,48,37)(16,27,49,38)(17,28,50,39)(18,29,51,40)(19,30,52,41)(20,31,53,42)(21,32,54,43)(22,33,55,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54)>;

G:=Group( (1,21,32,43,54)(2,22,33,44,55)(3,12,23,34,45)(4,13,24,35,46)(5,14,25,36,47)(6,15,26,37,48)(7,16,27,38,49)(8,17,28,39,50)(9,18,29,40,51)(10,19,30,41,52)(11,20,31,42,53), (12,23,45,34)(13,24,46,35)(14,25,47,36)(15,26,48,37)(16,27,49,38)(17,28,50,39)(18,29,51,40)(19,30,52,41)(20,31,53,42)(21,32,54,43)(22,33,55,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)(45,51)(46,50)(47,49)(52,55)(53,54) );

G=PermutationGroup([[(1,21,32,43,54),(2,22,33,44,55),(3,12,23,34,45),(4,13,24,35,46),(5,14,25,36,47),(6,15,26,37,48),(7,16,27,38,49),(8,17,28,39,50),(9,18,29,40,51),(10,19,30,41,52),(11,20,31,42,53)], [(12,23,45,34),(13,24,46,35),(14,25,47,36),(15,26,48,37),(16,27,49,38),(17,28,50,39),(18,29,51,40),(19,30,52,41),(20,31,53,42),(21,32,54,43),(22,33,55,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43),(45,51),(46,50),(47,49),(52,55),(53,54)]])

35 conjugacy classes

class 1 2A2B2C4A4B4C4D 5  10 11A···11E22A···22E44A···44J55A···55E
order1222444451011···1122···2244···4455···55
size1511555555554442···210···1010···108···8

35 irreducible representations

dim111111222448
type+++++++++
imageC1C2C2C2C4C4D11D22C4×D11F5C2×F5F5×D11
kernelF5×D11C11×F5C11⋊F5D5×D11C5×D11D55F5D5C5D11C11C1
# reps1111225510115

Matrix representation of F5×D11 in GL6(𝔽661)

100000
010000
00111245
00211245
00121245
00634634634657
,
10600000
01060000
000010
001000
00660660660416
000001
,
2182190000
6606600000
001000
000100
000010
000001
,
12190000
06600000
00660000
00066000
00006600
00000660

G:=sub<GL(6,GF(661))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,1,634,0,0,1,1,2,634,0,0,1,1,1,634,0,0,245,245,245,657],[106,0,0,0,0,0,0,106,0,0,0,0,0,0,0,1,660,0,0,0,0,0,660,0,0,0,1,0,660,0,0,0,0,0,416,1],[218,660,0,0,0,0,219,660,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,219,660,0,0,0,0,0,0,660,0,0,0,0,0,0,660,0,0,0,0,0,0,660,0,0,0,0,0,0,660] >;

F5×D11 in GAP, Magma, Sage, TeX

F_5\times D_{11}
% in TeX

G:=Group("F5xD11");
// GroupNames label

G:=SmallGroup(440,43);
// by ID

G=gap.SmallGroup(440,43);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-11,26,168,173,10004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=c^11=d^2=1,b*a*b^-1=a^3,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of F5×D11 in TeX

׿
×
𝔽