direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×C13⋊C6, C39⋊2C6, D13⋊C32, C13⋊C3⋊C6, C13⋊(C3×C6), (C3×D13)⋊C3, (C3×C13⋊C3)⋊2C2, SmallGroup(234,7)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C13 — C39 — C3×C13⋊C3 — C3×C13⋊C6 |
C13 — C3×C13⋊C6 |
Generators and relations for C3×C13⋊C6
G = < a,b,c | a3=b13=c6=1, ab=ba, ac=ca, cbc-1=b10 >
Character table of C3×C13⋊C6
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 13A | 13B | 39A | 39B | 39C | 39D | |
size | 1 | 13 | 1 | 1 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | -1 | ζ65 | -1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | -1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ5 | 1 | -1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ65 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ7 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ8 | 1 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ9 | 1 | -1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | -1 | ζ6 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ10 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | -1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 6 |
ρ11 | 1 | -1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ6 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ12 | 1 | -1 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | -1 | ζ65 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ13 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ14 | 1 | -1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ3 | ζ32 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | -1 | ζ6 | -1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 6 |
ρ15 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ16 | 1 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ17 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ18 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ19 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | orthogonal lifted from C13⋊C6 |
ρ20 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | -1+√13/2 | -1-√13/2 | -1-√13/2 | -1+√13/2 | orthogonal lifted from C13⋊C6 |
ρ21 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | ζ32ζ1311+ζ32ζ138+ζ32ζ137+ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ139+ζ3ζ134+ζ3ζ133+ζ3ζ13 | ζ32ζ1312+ζ32ζ1310+ζ32ζ139+ζ32ζ134+ζ32ζ133+ζ32ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132 | complex faithful |
ρ22 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | ζ3ζ1312+ζ3ζ1310+ζ3ζ139+ζ3ζ134+ζ3ζ133+ζ3ζ13 | ζ32ζ1311+ζ32ζ138+ζ32ζ137+ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ1311+ζ3ζ138+ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ139+ζ32ζ134+ζ32ζ133+ζ32ζ13 | complex faithful |
ρ23 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√13/2 | -1-√13/2 | ζ3ζ1311+ζ3ζ138+ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ1312+ζ32ζ1310+ζ32ζ139+ζ32ζ134+ζ32ζ133+ζ32ζ13 | ζ3ζ1312+ζ3ζ1310+ζ3ζ139+ζ3ζ134+ζ3ζ133+ζ3ζ13 | ζ32ζ1311+ζ32ζ138+ζ32ζ137+ζ32ζ136+ζ32ζ135+ζ32ζ132 | complex faithful |
ρ24 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√13/2 | -1+√13/2 | ζ32ζ1312+ζ32ζ1310+ζ32ζ139+ζ32ζ134+ζ32ζ133+ζ32ζ13 | ζ3ζ1311+ζ3ζ138+ζ3ζ137+ζ3ζ136+ζ3ζ135+ζ3ζ132 | ζ32ζ1311+ζ32ζ138+ζ32ζ137+ζ32ζ136+ζ32ζ135+ζ32ζ132 | ζ3ζ1312+ζ3ζ1310+ζ3ζ139+ζ3ζ134+ζ3ζ133+ζ3ζ13 | complex faithful |
(1 27 14)(2 28 15)(3 29 16)(4 30 17)(5 31 18)(6 32 19)(7 33 20)(8 34 21)(9 35 22)(10 36 23)(11 37 24)(12 38 25)(13 39 26)
(1 2 3 4 5 6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21 22 23 24 25 26)(27 28 29 30 31 32 33 34 35 36 37 38 39)
(1 27 14)(2 31 17 13 36 24)(3 35 20 12 32 21)(4 39 23 11 28 18)(5 30 26 10 37 15)(6 34 16 9 33 25)(7 38 19 8 29 22)
G:=sub<Sym(39)| (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,27,14)(2,31,17,13,36,24)(3,35,20,12,32,21)(4,39,23,11,28,18)(5,30,26,10,37,15)(6,34,16,9,33,25)(7,38,19,8,29,22)>;
G:=Group( (1,27,14)(2,28,15)(3,29,16)(4,30,17)(5,31,18)(6,32,19)(7,33,20)(8,34,21)(9,35,22)(10,36,23)(11,37,24)(12,38,25)(13,39,26), (1,2,3,4,5,6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)(27,28,29,30,31,32,33,34,35,36,37,38,39), (1,27,14)(2,31,17,13,36,24)(3,35,20,12,32,21)(4,39,23,11,28,18)(5,30,26,10,37,15)(6,34,16,9,33,25)(7,38,19,8,29,22) );
G=PermutationGroup([[(1,27,14),(2,28,15),(3,29,16),(4,30,17),(5,31,18),(6,32,19),(7,33,20),(8,34,21),(9,35,22),(10,36,23),(11,37,24),(12,38,25),(13,39,26)], [(1,2,3,4,5,6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21,22,23,24,25,26),(27,28,29,30,31,32,33,34,35,36,37,38,39)], [(1,27,14),(2,31,17,13,36,24),(3,35,20,12,32,21),(4,39,23,11,28,18),(5,30,26,10,37,15),(6,34,16,9,33,25),(7,38,19,8,29,22)]])
C3×C13⋊C6 is a maximal subgroup of
C3⋊F13
Matrix representation of C3×C13⋊C6 ►in GL6(𝔽79)
55 | 0 | 0 | 0 | 0 | 0 |
0 | 55 | 0 | 0 | 0 | 0 |
0 | 0 | 55 | 0 | 0 | 0 |
0 | 0 | 0 | 55 | 0 | 0 |
0 | 0 | 0 | 0 | 55 | 0 |
0 | 0 | 0 | 0 | 0 | 55 |
0 | 0 | 0 | 0 | 0 | 78 |
1 | 0 | 0 | 0 | 0 | 63 |
0 | 1 | 0 | 0 | 0 | 77 |
0 | 0 | 1 | 0 | 0 | 64 |
0 | 0 | 0 | 1 | 0 | 77 |
0 | 0 | 0 | 0 | 1 | 63 |
13 | 68 | 0 | 11 | 66 | 0 |
61 | 48 | 0 | 42 | 66 | 0 |
68 | 44 | 0 | 11 | 55 | 55 |
48 | 48 | 55 | 55 | 11 | 0 |
2 | 68 | 0 | 66 | 42 | 0 |
37 | 24 | 0 | 66 | 11 | 0 |
G:=sub<GL(6,GF(79))| [55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55,0,0,0,0,0,0,55],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,78,63,77,64,77,63],[13,61,68,48,2,37,68,48,44,48,68,24,0,0,0,55,0,0,11,42,11,55,66,66,66,66,55,11,42,11,0,0,55,0,0,0] >;
C3×C13⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_{13}\rtimes C_6
% in TeX
G:=Group("C3xC13:C6");
// GroupNames label
G:=SmallGroup(234,7);
// by ID
G=gap.SmallGroup(234,7);
# by ID
G:=PCGroup([4,-2,-3,-3,-13,3459,439]);
// Polycyclic
G:=Group<a,b,c|a^3=b^13=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^10>;
// generators/relations
Export
Subgroup lattice of C3×C13⋊C6 in TeX
Character table of C3×C13⋊C6 in TeX