Extensions 1→N→G→Q→1 with N=C15 and Q=C2×D4

Direct product G=N×Q with N=C15 and Q=C2×D4
dρLabelID
D4×C30120D4xC30240,186

Semidirect products G=N:Q with N=C15 and Q=C2×D4
extensionφ:Q→Aut NdρLabelID
C151(C2×D4) = D5×D12φ: C2×D4/C4C22 ⊆ Aut C15604+C15:1(C2xD4)240,136
C152(C2×D4) = S3×D20φ: C2×D4/C4C22 ⊆ Aut C15604+C15:2(C2xD4)240,137
C153(C2×D4) = C20⋊D6φ: C2×D4/C4C22 ⊆ Aut C15604C15:3(C2xD4)240,138
C154(C2×D4) = C2×C15⋊D4φ: C2×D4/C22C22 ⊆ Aut C15120C15:4(C2xD4)240,145
C155(C2×D4) = C2×C3⋊D20φ: C2×D4/C22C22 ⊆ Aut C15120C15:5(C2xD4)240,146
C156(C2×D4) = C2×C5⋊D12φ: C2×D4/C22C22 ⊆ Aut C15120C15:6(C2xD4)240,147
C157(C2×D4) = D5×C3⋊D4φ: C2×D4/C22C22 ⊆ Aut C15604C15:7(C2xD4)240,149
C158(C2×D4) = S3×C5⋊D4φ: C2×D4/C22C22 ⊆ Aut C15604C15:8(C2xD4)240,150
C159(C2×D4) = D10⋊D6φ: C2×D4/C22C22 ⊆ Aut C15604+C15:9(C2xD4)240,151
C1510(C2×D4) = C2×D60φ: C2×D4/C2×C4C2 ⊆ Aut C15120C15:10(C2xD4)240,177
C1511(C2×D4) = C6×D20φ: C2×D4/C2×C4C2 ⊆ Aut C15120C15:11(C2xD4)240,157
C1512(C2×D4) = C10×D12φ: C2×D4/C2×C4C2 ⊆ Aut C15120C15:12(C2xD4)240,167
C1513(C2×D4) = D4×D15φ: C2×D4/D4C2 ⊆ Aut C15604+C15:13(C2xD4)240,179
C1514(C2×D4) = C3×D4×D5φ: C2×D4/D4C2 ⊆ Aut C15604C15:14(C2xD4)240,159
C1515(C2×D4) = C5×S3×D4φ: C2×D4/D4C2 ⊆ Aut C15604C15:15(C2xD4)240,169
C1516(C2×D4) = C2×C157D4φ: C2×D4/C23C2 ⊆ Aut C15120C15:16(C2xD4)240,184
C1517(C2×D4) = C6×C5⋊D4φ: C2×D4/C23C2 ⊆ Aut C15120C15:17(C2xD4)240,164
C1518(C2×D4) = C10×C3⋊D4φ: C2×D4/C23C2 ⊆ Aut C15120C15:18(C2xD4)240,174


׿
×
𝔽