Extensions 1→N→G→Q→1 with N=C10 and Q=C2×A4

Direct product G=N×Q with N=C10 and Q=C2×A4
dρLabelID
A4×C2×C1060A4xC2xC10240,203

Semidirect products G=N:Q with N=C10 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C10⋊(C2×A4) = C2×D5×A4φ: C2×A4/A4C2 ⊆ Aut C10306+C10:(C2xA4)240,198

Non-split extensions G=N.Q with N=C10 and Q=C2×A4
extensionφ:Q→Aut NdρLabelID
C10.1(C2×A4) = Dic5.A4φ: C2×A4/A4C2 ⊆ Aut C10804+C10.1(C2xA4)240,108
C10.2(C2×A4) = D5×SL2(𝔽3)φ: C2×A4/A4C2 ⊆ Aut C10404-C10.2(C2xA4)240,109
C10.3(C2×A4) = A4×Dic5φ: C2×A4/A4C2 ⊆ Aut C10606-C10.3(C2xA4)240,110
C10.4(C2×A4) = A4×C20central extension (φ=1)603C10.4(C2xA4)240,152
C10.5(C2×A4) = C10×SL2(𝔽3)central extension (φ=1)80C10.5(C2xA4)240,153
C10.6(C2×A4) = C5×C4.A4central extension (φ=1)802C10.6(C2xA4)240,154

׿
×
𝔽