Extensions 1→N→G→Q→1 with N=C3⋊C8 and Q=D5

Direct product G=N×Q with N=C3⋊C8 and Q=D5
dρLabelID
D5×C3⋊C81204D5xC3:C8240,7

Semidirect products G=N:Q with N=C3⋊C8 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊C81D5 = C3⋊D40φ: D5/C5C2 ⊆ Out C3⋊C81204+C3:C8:1D5240,14
C3⋊C82D5 = C6.D20φ: D5/C5C2 ⊆ Out C3⋊C81204-C3:C8:2D5240,18
C3⋊C83D5 = C15⋊SD16φ: D5/C5C2 ⊆ Out C3⋊C81204+C3:C8:3D5240,19
C3⋊C84D5 = C20.32D6φ: D5/C5C2 ⊆ Out C3⋊C81204C3:C8:4D5240,10
C3⋊C85D5 = D30.5C4φ: D5/C5C2 ⊆ Out C3⋊C81204C3:C8:5D5240,12
C3⋊C86D5 = D152C8φ: trivial image1204C3:C8:6D5240,9

Non-split extensions G=N.Q with N=C3⋊C8 and Q=D5
extensionφ:Q→Out NdρLabelID
C3⋊C8.D5 = C3⋊Dic20φ: D5/C5C2 ⊆ Out C3⋊C82404-C3:C8.D5240,23

׿
×
𝔽