Extensions 1→N→G→Q→1 with N=Dic30 and Q=C2

Direct product G=N×Q with N=Dic30 and Q=C2
dρLabelID
C2×Dic30240C2xDic30240,175

Semidirect products G=N:Q with N=Dic30 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic301C2 = C24⋊D5φ: C2/C1C2 ⊆ Out Dic301202Dic30:1C2240,67
Dic302C2 = D4.D15φ: C2/C1C2 ⊆ Out Dic301204-Dic30:2C2240,77
Dic303C2 = D42D15φ: C2/C1C2 ⊆ Out Dic301204-Dic30:3C2240,180
Dic304C2 = Q8×D15φ: C2/C1C2 ⊆ Out Dic301204-Dic30:4C2240,181
Dic305C2 = C6.D20φ: C2/C1C2 ⊆ Out Dic301204-Dic30:5C2240,18
Dic306C2 = D205S3φ: C2/C1C2 ⊆ Out Dic301204-Dic30:6C2240,126
Dic307C2 = S3×Dic10φ: C2/C1C2 ⊆ Out Dic301204-Dic30:7C2240,128
Dic308C2 = D12.D5φ: C2/C1C2 ⊆ Out Dic301204-Dic30:8C2240,20
Dic309C2 = D5×Dic6φ: C2/C1C2 ⊆ Out Dic301204-Dic30:9C2240,125
Dic3010C2 = D125D5φ: C2/C1C2 ⊆ Out Dic301204-Dic30:10C2240,133
Dic3011C2 = D6011C2φ: trivial image1202Dic30:11C2240,178

Non-split extensions G=N.Q with N=Dic30 and Q=C2
extensionφ:Q→Out NdρLabelID
Dic30.1C2 = Dic60φ: C2/C1C2 ⊆ Out Dic302402-Dic30.1C2240,69
Dic30.2C2 = C157Q16φ: C2/C1C2 ⊆ Out Dic302404-Dic30.2C2240,79
Dic30.3C2 = C3⋊Dic20φ: C2/C1C2 ⊆ Out Dic302404-Dic30.3C2240,23
Dic30.4C2 = C5⋊Dic12φ: C2/C1C2 ⊆ Out Dic302404-Dic30.4C2240,24

׿
×
𝔽