Extensions 1→N→G→Q→1 with N=C4×D15 and Q=C2

Direct product G=N×Q with N=C4×D15 and Q=C2
dρLabelID
C2×C4×D15120C2xC4xD15240,176

Semidirect products G=N:Q with N=C4×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D15)⋊1C2 = D4×D15φ: C2/C1C2 ⊆ Out C4×D15604+(C4xD15):1C2240,179
(C4×D15)⋊2C2 = D42D15φ: C2/C1C2 ⊆ Out C4×D151204-(C4xD15):2C2240,180
(C4×D15)⋊3C2 = Q83D15φ: C2/C1C2 ⊆ Out C4×D151204+(C4xD15):3C2240,182
(C4×D15)⋊4C2 = D6011C2φ: C2/C1C2 ⊆ Out C4×D151202(C4xD15):4C2240,178
(C4×D15)⋊5C2 = D20⋊S3φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15):5C2240,127
(C4×D15)⋊6C2 = D12⋊D5φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15):6C2240,129
(C4×D15)⋊7C2 = C20⋊D6φ: C2/C1C2 ⊆ Out C4×D15604(C4xD15):7C2240,138
(C4×D15)⋊8C2 = D6.D10φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15):8C2240,132
(C4×D15)⋊9C2 = C4×S3×D5φ: C2/C1C2 ⊆ Out C4×D15604(C4xD15):9C2240,135

Non-split extensions G=N.Q with N=C4×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C4×D15).1C2 = Q8×D15φ: C2/C1C2 ⊆ Out C4×D151204-(C4xD15).1C2240,181
(C4×D15).2C2 = C40⋊S3φ: C2/C1C2 ⊆ Out C4×D151202(C4xD15).2C2240,66
(C4×D15).3C2 = D15⋊Q8φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15).3C2240,131
(C4×D15).4C2 = D152C8φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15).4C2240,9
(C4×D15).5C2 = D30.5C4φ: C2/C1C2 ⊆ Out C4×D151204(C4xD15).5C2240,12
(C4×D15).6C2 = C8×D15φ: trivial image1202(C4xD15).6C2240,65

׿
×
𝔽