Extensions 1→N→G→Q→1 with N=C2×D28 and Q=C2

Direct product G=N×Q with N=C2×D28 and Q=C2
dρLabelID
C22×D28112C2^2xD28224,176

Semidirect products G=N:Q with N=C2×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D28)⋊1C2 = C284D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):1C2224,69
(C2×D28)⋊2C2 = C22⋊D28φ: C2/C1C2 ⊆ Out C2×D2856(C2xD28):2C2224,77
(C2×D28)⋊3C2 = D14⋊D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):3C2224,79
(C2×D28)⋊4C2 = C4⋊D28φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):4C2224,90
(C2×D28)⋊5C2 = C2×D56φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):5C2224,98
(C2×D28)⋊6C2 = C287D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):6C2224,125
(C2×D28)⋊7C2 = C8⋊D14φ: C2/C1C2 ⊆ Out C2×D28564+(C2xD28):7C2224,103
(C2×D28)⋊8C2 = C2×D4⋊D7φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):8C2224,126
(C2×D28)⋊9C2 = C28⋊D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):9C2224,135
(C2×D28)⋊10C2 = D4⋊D14φ: C2/C1C2 ⊆ Out C2×D28564+(C2xD28):10C2224,144
(C2×D28)⋊11C2 = C2×D4×D7φ: C2/C1C2 ⊆ Out C2×D2856(C2xD28):11C2224,178
(C2×D28)⋊12C2 = C2×Q82D7φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28):12C2224,182
(C2×D28)⋊13C2 = D48D14φ: C2/C1C2 ⊆ Out C2×D28564+(C2xD28):13C2224,185
(C2×D28)⋊14C2 = C2×C4○D28φ: trivial image112(C2xD28):14C2224,177

Non-split extensions G=N.Q with N=C2×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D28).1C2 = C2.D56φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).1C2224,27
(C2×D28).2C2 = C4.D28φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).2C2224,70
(C2×D28).3C2 = D14.5D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).3C2224,89
(C2×D28).4C2 = C2×C56⋊C2φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).4C2224,97
(C2×D28).5C2 = C14.D8φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).5C2224,15
(C2×D28).6C2 = C28.46D4φ: C2/C1C2 ⊆ Out C2×D28564+(C2xD28).6C2224,29
(C2×D28).7C2 = D28⋊C4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).7C2224,88
(C2×D28).8C2 = C2×Q8⋊D7φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).8C2224,136
(C2×D28).9C2 = C28.23D4φ: C2/C1C2 ⊆ Out C2×D28112(C2xD28).9C2224,142
(C2×D28).10C2 = C4×D28φ: trivial image112(C2xD28).10C2224,68

׿
×
𝔽