Copied to
clipboard

G = D4:D14order 224 = 25·7

2nd semidirect product of D4 and D14 acting via D14/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4:4D14, Q8:4D14, C28.49D4, C28.17C23, D28.11C22, D4:D7:6C2, C4oD4:1D7, C7:C8:4C22, Q8:D7:6C2, C7:5(C8:C22), (C2xC14).8D4, (C2xD28):10C2, C14.59(C2xD4), (C2xC4).22D14, (C7xD4):4C22, C4.Dic7:9C2, (C7xQ8):4C22, C4.24(C7:D4), C4.17(C22xD7), (C2xC28).42C22, C22.5(C7:D4), (C7xC4oD4):1C2, C2.23(C2xC7:D4), SmallGroup(224,144)

Series: Derived Chief Lower central Upper central

C1C28 — D4:D14
C1C7C14C28D28C2xD28 — D4:D14
C7C14C28 — D4:D14
C1C2C2xC4C4oD4

Generators and relations for D4:D14
 G = < a,b,c,d | a4=b2=c14=d2=1, bab=dad=a-1, ac=ca, cbc-1=a2b, dbd=a-1b, dcd=c-1 >

Subgroups: 326 in 68 conjugacy classes, 29 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2xC4, C2xC4, D4, D4, Q8, C23, D7, C14, C14, M4(2), D8, SD16, C2xD4, C4oD4, C28, C28, D14, C2xC14, C2xC14, C8:C22, C7:C8, D28, D28, C2xC28, C2xC28, C7xD4, C7xD4, C7xQ8, C22xD7, C4.Dic7, D4:D7, Q8:D7, C2xD28, C7xC4oD4, D4:D14
Quotients: C1, C2, C22, D4, C23, D7, C2xD4, D14, C8:C22, C7:D4, C22xD7, C2xC7:D4, D4:D14

Smallest permutation representation of D4:D14
On 56 points
Generators in S56
(1 22 14 20)(2 23 8 21)(3 24 9 15)(4 25 10 16)(5 26 11 17)(6 27 12 18)(7 28 13 19)(29 56 36 49)(30 43 37 50)(31 44 38 51)(32 45 39 52)(33 46 40 53)(34 47 41 54)(35 48 42 55)
(1 54)(2 48)(3 56)(4 50)(5 44)(6 52)(7 46)(8 55)(9 49)(10 43)(11 51)(12 45)(13 53)(14 47)(15 36)(16 30)(17 38)(18 32)(19 40)(20 34)(21 42)(22 41)(23 35)(24 29)(25 37)(26 31)(27 39)(28 33)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 17)(2 16)(3 15)(4 21)(5 20)(6 19)(7 18)(8 25)(9 24)(10 23)(11 22)(12 28)(13 27)(14 26)(30 42)(31 41)(32 40)(33 39)(34 38)(35 37)(43 48)(44 47)(45 46)(49 56)(50 55)(51 54)(52 53)

G:=sub<Sym(56)| (1,22,14,20)(2,23,8,21)(3,24,9,15)(4,25,10,16)(5,26,11,17)(6,27,12,18)(7,28,13,19)(29,56,36,49)(30,43,37,50)(31,44,38,51)(32,45,39,52)(33,46,40,53)(34,47,41,54)(35,48,42,55), (1,54)(2,48)(3,56)(4,50)(5,44)(6,52)(7,46)(8,55)(9,49)(10,43)(11,51)(12,45)(13,53)(14,47)(15,36)(16,30)(17,38)(18,32)(19,40)(20,34)(21,42)(22,41)(23,35)(24,29)(25,37)(26,31)(27,39)(28,33), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,17)(2,16)(3,15)(4,21)(5,20)(6,19)(7,18)(8,25)(9,24)(10,23)(11,22)(12,28)(13,27)(14,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53)>;

G:=Group( (1,22,14,20)(2,23,8,21)(3,24,9,15)(4,25,10,16)(5,26,11,17)(6,27,12,18)(7,28,13,19)(29,56,36,49)(30,43,37,50)(31,44,38,51)(32,45,39,52)(33,46,40,53)(34,47,41,54)(35,48,42,55), (1,54)(2,48)(3,56)(4,50)(5,44)(6,52)(7,46)(8,55)(9,49)(10,43)(11,51)(12,45)(13,53)(14,47)(15,36)(16,30)(17,38)(18,32)(19,40)(20,34)(21,42)(22,41)(23,35)(24,29)(25,37)(26,31)(27,39)(28,33), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,17)(2,16)(3,15)(4,21)(5,20)(6,19)(7,18)(8,25)(9,24)(10,23)(11,22)(12,28)(13,27)(14,26)(30,42)(31,41)(32,40)(33,39)(34,38)(35,37)(43,48)(44,47)(45,46)(49,56)(50,55)(51,54)(52,53) );

G=PermutationGroup([[(1,22,14,20),(2,23,8,21),(3,24,9,15),(4,25,10,16),(5,26,11,17),(6,27,12,18),(7,28,13,19),(29,56,36,49),(30,43,37,50),(31,44,38,51),(32,45,39,52),(33,46,40,53),(34,47,41,54),(35,48,42,55)], [(1,54),(2,48),(3,56),(4,50),(5,44),(6,52),(7,46),(8,55),(9,49),(10,43),(11,51),(12,45),(13,53),(14,47),(15,36),(16,30),(17,38),(18,32),(19,40),(20,34),(21,42),(22,41),(23,35),(24,29),(25,37),(26,31),(27,39),(28,33)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,17),(2,16),(3,15),(4,21),(5,20),(6,19),(7,18),(8,25),(9,24),(10,23),(11,22),(12,28),(13,27),(14,26),(30,42),(31,41),(32,40),(33,39),(34,38),(35,37),(43,48),(44,47),(45,46),(49,56),(50,55),(51,54),(52,53)]])

D4:D14 is a maximal subgroup of
D4:4D28  D4.10D28  D4.3D28  D4.4D28  M4(2).D14  M4(2).15D14  2+ 1+4:D7  2- 1+4:D7  D8:15D14  D8:11D14  D7xC8:C22  D56:C22  C28.C24  D28.32C23  D28.34C23
D4:D14 is a maximal quotient of
C28.(C2xQ8)  C4:C4:36D14  C4:C4.236D14  C28.38SD16  C42.48D14  C28:7D8  C28.23Q16  C42.56D14  Q8:D28  C4:D4.D7  D28:16D4  C4:D4:D7  (C2xC14).Q16  D28.36D4  C7:C8:6D4  C42.62D14  D28.23D4  C42.64D14  C42.68D14  D28.4Q8  C42.70D14  C4oD4:Dic7  (C7xD4):14D4

41 conjugacy classes

class 1 2A2B2C2D2E4A4B4C7A7B7C8A8B14A14B14C14D···14L28A···28F28G···28O
order1222224447778814141414···1428···2828···28
size1124282822422228282224···42···24···4

41 irreducible representations

dim1111112222222244
type++++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14D14C7:D4C7:D4C8:C22D4:D14
kernelD4:D14C4.Dic7D4:D7Q8:D7C2xD28C7xC4oD4C28C2xC14C4oD4C2xC4D4Q8C4C22C7C1
# reps1122111133336616

Matrix representation of D4:D14 in GL4(F113) generated by

587500
385500
17236638
94303747
,
8236843
874665106
4301125
461083399
,
808000
33900
10311110533
67534732
,
808000
93300
29876858
82918245
G:=sub<GL(4,GF(113))| [58,38,17,94,75,55,23,30,0,0,66,37,0,0,38,47],[82,87,4,46,36,46,30,108,8,65,112,33,43,106,5,99],[80,33,103,67,80,9,111,53,0,0,105,47,0,0,33,32],[80,9,29,82,80,33,87,91,0,0,68,82,0,0,58,45] >;

D4:D14 in GAP, Magma, Sage, TeX

D_4\rtimes D_{14}
% in TeX

G:=Group("D4:D14");
// GroupNames label

G:=SmallGroup(224,144);
// by ID

G=gap.SmallGroup(224,144);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,188,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^14=d^2=1,b*a*b=d*a*d=a^-1,a*c=c*a,c*b*c^-1=a^2*b,d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<