Copied to
clipboard

G = C2×Q8⋊D7order 224 = 25·7

Direct product of C2 and Q8⋊D7

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×Q8⋊D7, Q83D14, C143SD16, C28.18D4, C28.14C23, D28.9C22, C7⋊C89C22, (C2×Q8)⋊1D7, C74(C2×SD16), (Q8×C14)⋊1C2, (C2×D28).8C2, (C2×C4).53D14, (C2×C14).41D4, C14.53(C2×D4), C4.8(C7⋊D4), (C7×Q8)⋊3C22, C4.14(C22×D7), (C2×C28).36C22, C22.23(C7⋊D4), (C2×C7⋊C8)⋊6C2, C2.17(C2×C7⋊D4), SmallGroup(224,136)

Series: Derived Chief Lower central Upper central

C1C28 — C2×Q8⋊D7
C1C7C14C28D28C2×D28 — C2×Q8⋊D7
C7C14C28 — C2×Q8⋊D7
C1C22C2×C4C2×Q8

Generators and relations for C2×Q8⋊D7
 G = < a,b,c,d,e | a2=b4=d7=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, cd=dc, ece=b-1c, ede=d-1 >

Subgroups: 318 in 68 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D7, C14, C14, C2×C8, SD16, C2×D4, C2×Q8, C28, C28, D14, C2×C14, C2×SD16, C7⋊C8, D28, D28, C2×C28, C2×C28, C7×Q8, C7×Q8, C22×D7, C2×C7⋊C8, Q8⋊D7, C2×D28, Q8×C14, C2×Q8⋊D7
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C2×SD16, C7⋊D4, C22×D7, Q8⋊D7, C2×C7⋊D4, C2×Q8⋊D7

Smallest permutation representation of C2×Q8⋊D7
On 112 points
Generators in S112
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 91)(36 92)(37 93)(38 94)(39 95)(40 96)(41 97)(42 98)(43 99)(44 100)(45 101)(46 102)(47 103)(48 104)(49 105)(50 106)(51 107)(52 108)(53 109)(54 110)(55 111)(56 112)
(1 22 8 15)(2 23 9 16)(3 24 10 17)(4 25 11 18)(5 26 12 19)(6 27 13 20)(7 28 14 21)(29 43 36 50)(30 44 37 51)(31 45 38 52)(32 46 39 53)(33 47 40 54)(34 48 41 55)(35 49 42 56)(57 78 64 71)(58 79 65 72)(59 80 66 73)(60 81 67 74)(61 82 68 75)(62 83 69 76)(63 84 70 77)(85 99 92 106)(86 100 93 107)(87 101 94 108)(88 102 95 109)(89 103 96 110)(90 104 97 111)(91 105 98 112)
(1 92 8 85)(2 93 9 86)(3 94 10 87)(4 95 11 88)(5 96 12 89)(6 97 13 90)(7 98 14 91)(15 106 22 99)(16 107 23 100)(17 108 24 101)(18 109 25 102)(19 110 26 103)(20 111 27 104)(21 112 28 105)(29 57 36 64)(30 58 37 65)(31 59 38 66)(32 60 39 67)(33 61 40 68)(34 62 41 69)(35 63 42 70)(43 71 50 78)(44 72 51 79)(45 73 52 80)(46 74 53 81)(47 75 54 82)(48 76 55 83)(49 77 56 84)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(8 14)(9 13)(10 12)(15 28)(16 27)(17 26)(18 25)(19 24)(20 23)(21 22)(29 49)(30 48)(31 47)(32 46)(33 45)(34 44)(35 43)(36 56)(37 55)(38 54)(39 53)(40 52)(41 51)(42 50)(57 63)(58 62)(59 61)(64 70)(65 69)(66 68)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 105)(86 104)(87 103)(88 102)(89 101)(90 100)(91 99)(92 112)(93 111)(94 110)(95 109)(96 108)(97 107)(98 106)

G:=sub<Sym(112)| (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,57,36,64)(30,58,37,65)(31,59,38,66)(32,60,39,67)(33,61,40,68)(34,62,41,69)(35,63,42,70)(43,71,50,78)(44,72,51,79)(45,73,52,80)(46,74,53,81)(47,75,54,82)(48,76,55,83)(49,77,56,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106)>;

G:=Group( (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,91)(36,92)(37,93)(38,94)(39,95)(40,96)(41,97)(42,98)(43,99)(44,100)(45,101)(46,102)(47,103)(48,104)(49,105)(50,106)(51,107)(52,108)(53,109)(54,110)(55,111)(56,112), (1,22,8,15)(2,23,9,16)(3,24,10,17)(4,25,11,18)(5,26,12,19)(6,27,13,20)(7,28,14,21)(29,43,36,50)(30,44,37,51)(31,45,38,52)(32,46,39,53)(33,47,40,54)(34,48,41,55)(35,49,42,56)(57,78,64,71)(58,79,65,72)(59,80,66,73)(60,81,67,74)(61,82,68,75)(62,83,69,76)(63,84,70,77)(85,99,92,106)(86,100,93,107)(87,101,94,108)(88,102,95,109)(89,103,96,110)(90,104,97,111)(91,105,98,112), (1,92,8,85)(2,93,9,86)(3,94,10,87)(4,95,11,88)(5,96,12,89)(6,97,13,90)(7,98,14,91)(15,106,22,99)(16,107,23,100)(17,108,24,101)(18,109,25,102)(19,110,26,103)(20,111,27,104)(21,112,28,105)(29,57,36,64)(30,58,37,65)(31,59,38,66)(32,60,39,67)(33,61,40,68)(34,62,41,69)(35,63,42,70)(43,71,50,78)(44,72,51,79)(45,73,52,80)(46,74,53,81)(47,75,54,82)(48,76,55,83)(49,77,56,84), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(8,14)(9,13)(10,12)(15,28)(16,27)(17,26)(18,25)(19,24)(20,23)(21,22)(29,49)(30,48)(31,47)(32,46)(33,45)(34,44)(35,43)(36,56)(37,55)(38,54)(39,53)(40,52)(41,51)(42,50)(57,63)(58,62)(59,61)(64,70)(65,69)(66,68)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,105)(86,104)(87,103)(88,102)(89,101)(90,100)(91,99)(92,112)(93,111)(94,110)(95,109)(96,108)(97,107)(98,106) );

G=PermutationGroup([[(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,91),(36,92),(37,93),(38,94),(39,95),(40,96),(41,97),(42,98),(43,99),(44,100),(45,101),(46,102),(47,103),(48,104),(49,105),(50,106),(51,107),(52,108),(53,109),(54,110),(55,111),(56,112)], [(1,22,8,15),(2,23,9,16),(3,24,10,17),(4,25,11,18),(5,26,12,19),(6,27,13,20),(7,28,14,21),(29,43,36,50),(30,44,37,51),(31,45,38,52),(32,46,39,53),(33,47,40,54),(34,48,41,55),(35,49,42,56),(57,78,64,71),(58,79,65,72),(59,80,66,73),(60,81,67,74),(61,82,68,75),(62,83,69,76),(63,84,70,77),(85,99,92,106),(86,100,93,107),(87,101,94,108),(88,102,95,109),(89,103,96,110),(90,104,97,111),(91,105,98,112)], [(1,92,8,85),(2,93,9,86),(3,94,10,87),(4,95,11,88),(5,96,12,89),(6,97,13,90),(7,98,14,91),(15,106,22,99),(16,107,23,100),(17,108,24,101),(18,109,25,102),(19,110,26,103),(20,111,27,104),(21,112,28,105),(29,57,36,64),(30,58,37,65),(31,59,38,66),(32,60,39,67),(33,61,40,68),(34,62,41,69),(35,63,42,70),(43,71,50,78),(44,72,51,79),(45,73,52,80),(46,74,53,81),(47,75,54,82),(48,76,55,83),(49,77,56,84)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(8,14),(9,13),(10,12),(15,28),(16,27),(17,26),(18,25),(19,24),(20,23),(21,22),(29,49),(30,48),(31,47),(32,46),(33,45),(34,44),(35,43),(36,56),(37,55),(38,54),(39,53),(40,52),(41,51),(42,50),(57,63),(58,62),(59,61),(64,70),(65,69),(66,68),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,105),(86,104),(87,103),(88,102),(89,101),(90,100),(91,99),(92,112),(93,111),(94,110),(95,109),(96,108),(97,107),(98,106)]])

C2×Q8⋊D7 is a maximal subgroup of
D28.6D4  Dic77SD16  Q82D28  D142SD16  D284D4  C7⋊(C8⋊D4)  Q8⋊D7⋊C4  Dic7⋊SD16  D28.12D4  C42.56D14  Q8⋊D28  Q8.1D28  D28.36D4  D28.37D4  C7⋊C824D4  C7⋊C86D4  D28.23D4  C42.64D14  C42.214D14  C285SD16  C286SD16  C42.80D14  Dic75SD16  D146SD16  C5615D4  C569D4  (C2×Q16)⋊D7  D28.17D4  C56.37D4  C56.28D4  M4(2).15D14  (C7×Q8)⋊13D4  (C7×D4)⋊14D4  C2×D7×SD16  C56.C23  D28.34C23
C2×Q8⋊D7 is a maximal quotient of
C4⋊C4.228D14  C28.48SD16  Q8⋊D28  C22⋊Q8.D7  D28.36D4  C7⋊C824D4  C28.SD16  C28.Q16  C285SD16  D285Q8  C286SD16  C28.D8  (C7×Q8)⋊13D4

44 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D7A7B7C8A8B8C8D14A···14I28A···28R
order1222224444777888814···1428···28
size111128282244222141414142···24···4

44 irreducible representations

dim11111222222224
type+++++++++++
imageC1C2C2C2C2D4D4D7SD16D14D14C7⋊D4C7⋊D4Q8⋊D7
kernelC2×Q8⋊D7C2×C7⋊C8Q8⋊D7C2×D28Q8×C14C28C2×C14C2×Q8C14C2×C4Q8C4C22C2
# reps11411113436666

Matrix representation of C2×Q8⋊D7 in GL4(𝔽113) generated by

112000
011200
001120
000112
,
0100
112000
0010
0001
,
131300
1310000
001120
000112
,
1000
0100
0080112
0081112
,
1000
011200
00979
009104
G:=sub<GL(4,GF(113))| [112,0,0,0,0,112,0,0,0,0,112,0,0,0,0,112],[0,112,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[13,13,0,0,13,100,0,0,0,0,112,0,0,0,0,112],[1,0,0,0,0,1,0,0,0,0,80,81,0,0,112,112],[1,0,0,0,0,112,0,0,0,0,9,9,0,0,79,104] >;

C2×Q8⋊D7 in GAP, Magma, Sage, TeX

C_2\times Q_8\rtimes D_7
% in TeX

G:=Group("C2xQ8:D7");
// GroupNames label

G:=SmallGroup(224,136);
// by ID

G=gap.SmallGroup(224,136);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,86,579,159,69,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=d^7=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽