Extensions 1→N→G→Q→1 with N=C3×D5 and Q=C2×C4

Direct product G=N×Q with N=C3×D5 and Q=C2×C4
dρLabelID
D5×C2×C12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C3×D5 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C3×D5)⋊(C2×C4) = C2×S3×F5φ: C2×C4/C2C22 ⊆ Out C3×D5308+(C3xD5):(C2xC4)240,195
(C3×D5)⋊2(C2×C4) = C4×S3×D5φ: C2×C4/C4C2 ⊆ Out C3×D5604(C3xD5):2(C2xC4)240,135
(C3×D5)⋊3(C2×C4) = C2×D5×Dic3φ: C2×C4/C22C2 ⊆ Out C3×D5120(C3xD5):3(C2xC4)240,139
(C3×D5)⋊4(C2×C4) = C22×C3⋊F5φ: C2×C4/C22C2 ⊆ Out C3×D560(C3xD5):4(C2xC4)240,201
(C3×D5)⋊5(C2×C4) = C2×C6×F5φ: C2×C4/C22C2 ⊆ Out C3×D560(C3xD5):5(C2xC4)240,200

Non-split extensions G=N.Q with N=C3×D5 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C3×D5).(C2×C4) = Dic3×F5φ: C2×C4/C2C22 ⊆ Out C3×D5608-(C3xD5).(C2xC4)240,95
(C3×D5).2(C2×C4) = C4×C3⋊F5φ: C2×C4/C4C2 ⊆ Out C3×D5604(C3xD5).2(C2xC4)240,120
(C3×D5).3(C2×C4) = C12×F5φ: C2×C4/C4C2 ⊆ Out C3×D5604(C3xD5).3(C2xC4)240,113

׿
×
𝔽