Extensions 1→N→G→Q→1 with N=Dic15 and Q=C4

Direct product G=N×Q with N=Dic15 and Q=C4
dρLabelID
C4×Dic15240C4xDic15240,72

Semidirect products G=N:Q with N=Dic15 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic151C4 = Dic3×F5φ: C4/C1C4 ⊆ Out Dic15608-Dic15:1C4240,95
Dic152C4 = Dic3⋊F5φ: C4/C1C4 ⊆ Out Dic15608-Dic15:2C4240,97
Dic153C4 = C30.4Q8φ: C4/C2C2 ⊆ Out Dic15240Dic15:3C4240,73
Dic154C4 = Dic3×Dic5φ: C4/C2C2 ⊆ Out Dic15240Dic15:4C4240,25
Dic155C4 = Dic155C4φ: C4/C2C2 ⊆ Out Dic15240Dic15:5C4240,30

Non-split extensions G=N.Q with N=Dic15 and Q=C4
extensionφ:Q→Out NdρLabelID
Dic15.1C4 = S3×C5⋊C8φ: C4/C1C4 ⊆ Out Dic151208-Dic15.1C4240,98
Dic15.2C4 = D6.F5φ: C4/C1C4 ⊆ Out Dic151208-Dic15.2C4240,100
Dic15.3C4 = C40⋊S3φ: C4/C2C2 ⊆ Out Dic151202Dic15.3C4240,66
Dic15.4C4 = D152C8φ: C4/C2C2 ⊆ Out Dic151204Dic15.4C4240,9
Dic15.5C4 = D30.5C4φ: C4/C2C2 ⊆ Out Dic151204Dic15.5C4240,12
Dic15.6C4 = C8×D15φ: trivial image1202Dic15.6C4240,65

׿
×
𝔽