Copied to
clipboard

G = S3×C5⋊C8order 240 = 24·3·5

Direct product of S3 and C5⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×C5⋊C8, D6.2F5, Dic5.7D6, Dic15.1C4, (C5×S3)⋊C8, C52(S3×C8), C151(C2×C8), C15⋊C81C2, C2.2(S3×F5), C6.4(C2×F5), C10.4(C4×S3), C30.4(C2×C4), (S3×C10).1C4, (S3×Dic5).2C2, (C3×Dic5).7C22, C31(C2×C5⋊C8), (C3×C5⋊C8)⋊1C2, SmallGroup(240,98)

Series: Derived Chief Lower central Upper central

C1C15 — S3×C5⋊C8
C1C5C15C30C3×Dic5C3×C5⋊C8 — S3×C5⋊C8
C15 — S3×C5⋊C8
C1C2

Generators and relations for S3×C5⋊C8
 G = < a,b,c,d | a3=b2=c5=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

3C2
3C2
3C22
5C4
15C4
3C10
3C10
5C8
15C2×C4
15C8
5Dic3
5C12
3Dic5
3C2×C10
15C2×C8
5C4×S3
5C24
5C3⋊C8
3C5⋊C8
3C2×Dic5
5S3×C8
3C2×C5⋊C8

Character table of S3×C5⋊C8

 class 12A2B2C34A4B4C4D568A8B8C8D8E8F8G8H10A10B10C12A12B1524A24B24C24D30
 size 11332551515425555151515154121210108101010108
ρ1111111111111111111111111111111    trivial
ρ211111111111-1-1-1-1-1-1-1-1111111-1-1-1-11    linear of order 2
ρ311-1-1111-1-1111111-1-1-1-11-1-111111111    linear of order 2
ρ411-1-1111-1-111-1-1-1-111111-1-1111-1-1-1-11    linear of order 2
ρ511111-1-1-1-111ii-i-i-ii-ii111-1-11i-i-ii1    linear of order 4
ρ611111-1-1-1-111-i-iiii-ii-i111-1-11-iii-i1    linear of order 4
ρ711-1-11-1-11111ii-i-ii-ii-i1-1-1-1-11i-i-ii1    linear of order 4
ρ811-1-11-1-11111-i-iii-ii-ii1-1-1-1-11-iii-i1    linear of order 4
ρ91-11-11i-i-ii1-1ζ85ζ8ζ87ζ83ζ83ζ8ζ87ζ85-11-1-ii1ζ8ζ87ζ83ζ85-1    linear of order 8
ρ101-1-111-ii-ii1-1ζ83ζ87ζ8ζ85ζ8ζ83ζ85ζ87-1-11i-i1ζ87ζ8ζ85ζ83-1    linear of order 8
ρ111-11-11-iii-i1-1ζ87ζ83ζ85ζ8ζ8ζ83ζ85ζ87-11-1i-i1ζ83ζ85ζ8ζ87-1    linear of order 8
ρ121-11-11i-i-ii1-1ζ8ζ85ζ83ζ87ζ87ζ85ζ83ζ8-11-1-ii1ζ85ζ83ζ87ζ8-1    linear of order 8
ρ131-1-111i-ii-i1-1ζ85ζ8ζ87ζ83ζ87ζ85ζ83ζ8-1-11-ii1ζ8ζ87ζ83ζ85-1    linear of order 8
ρ141-1-111-ii-ii1-1ζ87ζ83ζ85ζ8ζ85ζ87ζ8ζ83-1-11i-i1ζ83ζ85ζ8ζ87-1    linear of order 8
ρ151-1-111i-ii-i1-1ζ8ζ85ζ83ζ87ζ83ζ8ζ87ζ85-1-11-ii1ζ85ζ83ζ87ζ8-1    linear of order 8
ρ161-11-11-iii-i1-1ζ83ζ87ζ8ζ85ζ85ζ87ζ8ζ83-11-1i-i1ζ87ζ8ζ85ζ83-1    linear of order 8
ρ172200-122002-122220000200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ182200-122002-1-2-2-2-20000200-1-1-11111-1    orthogonal lifted from D6
ρ192200-1-2-2002-12i2i-2i-2i000020011-1-iii-i-1    complex lifted from C4×S3
ρ202200-1-2-2002-1-2i-2i2i2i000020011-1i-i-ii-1    complex lifted from C4×S3
ρ212-200-12i-2i002185887830000-200i-i-1ζ85ζ83ζ87ζ81    complex lifted from S3×C8
ρ222-200-12i-2i002188583870000-200i-i-1ζ8ζ87ζ83ζ851    complex lifted from S3×C8
ρ232-200-1-2i2i002183878850000-200-ii-1ζ83ζ85ζ8ζ871    complex lifted from S3×C8
ρ242-200-1-2i2i002187838580000-200-ii-1ζ87ζ8ζ85ζ831    complex lifted from S3×C8
ρ25444440000-1400000000-1-1-100-10000-1    orthogonal lifted from F5
ρ2644-4-440000-1400000000-11100-10000-1    orthogonal lifted from C2×F5
ρ274-44-440000-1-4000000001-1100-100001    symplectic lifted from C5⋊C8, Schur index 2
ρ284-4-4440000-1-40000000011-100-100001    symplectic lifted from C5⋊C8, Schur index 2
ρ298800-40000-2-400000000-20000100001    orthogonal lifted from S3×F5
ρ308-800-40000-24000000002000010000-1    symplectic faithful, Schur index 2

Smallest permutation representation of S3×C5⋊C8
On 120 points
Generators in S120
(1 11 50)(2 12 51)(3 13 52)(4 14 53)(5 15 54)(6 16 55)(7 9 56)(8 10 49)(17 106 29)(18 107 30)(19 108 31)(20 109 32)(21 110 25)(22 111 26)(23 112 27)(24 105 28)(33 79 113)(34 80 114)(35 73 115)(36 74 116)(37 75 117)(38 76 118)(39 77 119)(40 78 120)(41 58 103)(42 59 104)(43 60 97)(44 61 98)(45 62 99)(46 63 100)(47 64 101)(48 57 102)(65 95 87)(66 96 88)(67 89 81)(68 90 82)(69 91 83)(70 92 84)(71 93 85)(72 94 86)
(9 56)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 106)(18 107)(19 108)(20 109)(21 110)(22 111)(23 112)(24 105)(33 79)(34 80)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 57)(65 95)(66 96)(67 89)(68 90)(69 91)(70 92)(71 93)(72 94)
(1 99 88 113 28)(2 114 100 29 81)(3 30 115 82 101)(4 83 31 102 116)(5 103 84 117 32)(6 118 104 25 85)(7 26 119 86 97)(8 87 27 98 120)(9 22 39 72 43)(10 65 23 44 40)(11 45 66 33 24)(12 34 46 17 67)(13 18 35 68 47)(14 69 19 48 36)(15 41 70 37 20)(16 38 42 21 71)(49 95 112 61 78)(50 62 96 79 105)(51 80 63 106 89)(52 107 73 90 64)(53 91 108 57 74)(54 58 92 75 109)(55 76 59 110 93)(56 111 77 94 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,11,50)(2,12,51)(3,13,52)(4,14,53)(5,15,54)(6,16,55)(7,9,56)(8,10,49)(17,106,29)(18,107,30)(19,108,31)(20,109,32)(21,110,25)(22,111,26)(23,112,27)(24,105,28)(33,79,113)(34,80,114)(35,73,115)(36,74,116)(37,75,117)(38,76,118)(39,77,119)(40,78,120)(41,58,103)(42,59,104)(43,60,97)(44,61,98)(45,62,99)(46,63,100)(47,64,101)(48,57,102)(65,95,87)(66,96,88)(67,89,81)(68,90,82)(69,91,83)(70,92,84)(71,93,85)(72,94,86), (9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,105)(33,79)(34,80)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,57)(65,95)(66,96)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94), (1,99,88,113,28)(2,114,100,29,81)(3,30,115,82,101)(4,83,31,102,116)(5,103,84,117,32)(6,118,104,25,85)(7,26,119,86,97)(8,87,27,98,120)(9,22,39,72,43)(10,65,23,44,40)(11,45,66,33,24)(12,34,46,17,67)(13,18,35,68,47)(14,69,19,48,36)(15,41,70,37,20)(16,38,42,21,71)(49,95,112,61,78)(50,62,96,79,105)(51,80,63,106,89)(52,107,73,90,64)(53,91,108,57,74)(54,58,92,75,109)(55,76,59,110,93)(56,111,77,94,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,11,50)(2,12,51)(3,13,52)(4,14,53)(5,15,54)(6,16,55)(7,9,56)(8,10,49)(17,106,29)(18,107,30)(19,108,31)(20,109,32)(21,110,25)(22,111,26)(23,112,27)(24,105,28)(33,79,113)(34,80,114)(35,73,115)(36,74,116)(37,75,117)(38,76,118)(39,77,119)(40,78,120)(41,58,103)(42,59,104)(43,60,97)(44,61,98)(45,62,99)(46,63,100)(47,64,101)(48,57,102)(65,95,87)(66,96,88)(67,89,81)(68,90,82)(69,91,83)(70,92,84)(71,93,85)(72,94,86), (9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,106)(18,107)(19,108)(20,109)(21,110)(22,111)(23,112)(24,105)(33,79)(34,80)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,57)(65,95)(66,96)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94), (1,99,88,113,28)(2,114,100,29,81)(3,30,115,82,101)(4,83,31,102,116)(5,103,84,117,32)(6,118,104,25,85)(7,26,119,86,97)(8,87,27,98,120)(9,22,39,72,43)(10,65,23,44,40)(11,45,66,33,24)(12,34,46,17,67)(13,18,35,68,47)(14,69,19,48,36)(15,41,70,37,20)(16,38,42,21,71)(49,95,112,61,78)(50,62,96,79,105)(51,80,63,106,89)(52,107,73,90,64)(53,91,108,57,74)(54,58,92,75,109)(55,76,59,110,93)(56,111,77,94,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,11,50),(2,12,51),(3,13,52),(4,14,53),(5,15,54),(6,16,55),(7,9,56),(8,10,49),(17,106,29),(18,107,30),(19,108,31),(20,109,32),(21,110,25),(22,111,26),(23,112,27),(24,105,28),(33,79,113),(34,80,114),(35,73,115),(36,74,116),(37,75,117),(38,76,118),(39,77,119),(40,78,120),(41,58,103),(42,59,104),(43,60,97),(44,61,98),(45,62,99),(46,63,100),(47,64,101),(48,57,102),(65,95,87),(66,96,88),(67,89,81),(68,90,82),(69,91,83),(70,92,84),(71,93,85),(72,94,86)], [(9,56),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,106),(18,107),(19,108),(20,109),(21,110),(22,111),(23,112),(24,105),(33,79),(34,80),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,57),(65,95),(66,96),(67,89),(68,90),(69,91),(70,92),(71,93),(72,94)], [(1,99,88,113,28),(2,114,100,29,81),(3,30,115,82,101),(4,83,31,102,116),(5,103,84,117,32),(6,118,104,25,85),(7,26,119,86,97),(8,87,27,98,120),(9,22,39,72,43),(10,65,23,44,40),(11,45,66,33,24),(12,34,46,17,67),(13,18,35,68,47),(14,69,19,48,36),(15,41,70,37,20),(16,38,42,21,71),(49,95,112,61,78),(50,62,96,79,105),(51,80,63,106,89),(52,107,73,90,64),(53,91,108,57,74),(54,58,92,75,109),(55,76,59,110,93),(56,111,77,94,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

S3×C5⋊C8 is a maximal subgroup of   D12.2F5  D12.F5  C5⋊C8.D6  D15⋊C8⋊C2
S3×C5⋊C8 is a maximal quotient of   C15⋊M5(2)  Dic5.22D12  C30.4M4(2)

Matrix representation of S3×C5⋊C8 in GL6(𝔽241)

02400000
12400000
001000
000100
000010
000001
,
010000
100000
001000
000100
000010
000001
,
100000
010000
00000240
00100240
00010240
00001240
,
800000
080000
00641963222
0067177045
0064019648
0019317745

G:=sub<GL(6,GF(241))| [0,1,0,0,0,0,240,240,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,240,240,240,240],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,64,67,64,19,0,0,196,177,0,3,0,0,3,0,196,177,0,0,222,45,48,45] >;

S3×C5⋊C8 in GAP, Magma, Sage, TeX

S_3\times C_5\rtimes C_8
% in TeX

G:=Group("S3xC5:C8");
// GroupNames label

G:=SmallGroup(240,98);
// by ID

G=gap.SmallGroup(240,98);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-5,24,50,490,3461,1745]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^5=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of S3×C5⋊C8 in TeX
Character table of S3×C5⋊C8 in TeX

׿
×
𝔽