extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C4xD5) = D15:2C8 | φ: C4xD5/Dic5 → C2 ⊆ Aut C6 | 120 | 4 | C6.1(C4xD5) | 240,9 |
C6.2(C4xD5) = D30.5C4 | φ: C4xD5/Dic5 → C2 ⊆ Aut C6 | 120 | 4 | C6.2(C4xD5) | 240,12 |
C6.3(C4xD5) = D30:4C4 | φ: C4xD5/Dic5 → C2 ⊆ Aut C6 | 120 | | C6.3(C4xD5) | 240,28 |
C6.4(C4xD5) = Dic15:5C4 | φ: C4xD5/Dic5 → C2 ⊆ Aut C6 | 240 | | C6.4(C4xD5) | 240,30 |
C6.5(C4xD5) = C8xD15 | φ: C4xD5/C20 → C2 ⊆ Aut C6 | 120 | 2 | C6.5(C4xD5) | 240,65 |
C6.6(C4xD5) = C40:S3 | φ: C4xD5/C20 → C2 ⊆ Aut C6 | 120 | 2 | C6.6(C4xD5) | 240,66 |
C6.7(C4xD5) = C4xDic15 | φ: C4xD5/C20 → C2 ⊆ Aut C6 | 240 | | C6.7(C4xD5) | 240,72 |
C6.8(C4xD5) = C30.4Q8 | φ: C4xD5/C20 → C2 ⊆ Aut C6 | 240 | | C6.8(C4xD5) | 240,73 |
C6.9(C4xD5) = D30:3C4 | φ: C4xD5/C20 → C2 ⊆ Aut C6 | 120 | | C6.9(C4xD5) | 240,75 |
C6.10(C4xD5) = D5xC3:C8 | φ: C4xD5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.10(C4xD5) | 240,7 |
C6.11(C4xD5) = C20.32D6 | φ: C4xD5/D10 → C2 ⊆ Aut C6 | 120 | 4 | C6.11(C4xD5) | 240,10 |
C6.12(C4xD5) = Dic3xDic5 | φ: C4xD5/D10 → C2 ⊆ Aut C6 | 240 | | C6.12(C4xD5) | 240,25 |
C6.13(C4xD5) = D10:Dic3 | φ: C4xD5/D10 → C2 ⊆ Aut C6 | 120 | | C6.13(C4xD5) | 240,26 |
C6.14(C4xD5) = C30.Q8 | φ: C4xD5/D10 → C2 ⊆ Aut C6 | 240 | | C6.14(C4xD5) | 240,29 |
C6.15(C4xD5) = D5xC24 | central extension (φ=1) | 120 | 2 | C6.15(C4xD5) | 240,33 |
C6.16(C4xD5) = C3xC8:D5 | central extension (φ=1) | 120 | 2 | C6.16(C4xD5) | 240,34 |
C6.17(C4xD5) = C12xDic5 | central extension (φ=1) | 240 | | C6.17(C4xD5) | 240,40 |
C6.18(C4xD5) = C3xC10.D4 | central extension (φ=1) | 240 | | C6.18(C4xD5) | 240,41 |
C6.19(C4xD5) = C3xD10:C4 | central extension (φ=1) | 120 | | C6.19(C4xD5) | 240,43 |