Extensions 1→N→G→Q→1 with N=C6 and Q=C4xD5

Direct product G=NxQ with N=C6 and Q=C4xD5
dρLabelID
D5xC2xC12120D5xC2xC12240,156

Semidirect products G=N:Q with N=C6 and Q=C4xD5
extensionφ:Q→Aut NdρLabelID
C6:1(C4xD5) = C2xD30.C2φ: C4xD5/Dic5C2 ⊆ Aut C6120C6:1(C4xD5)240,144
C6:2(C4xD5) = C2xC4xD15φ: C4xD5/C20C2 ⊆ Aut C6120C6:2(C4xD5)240,176
C6:3(C4xD5) = C2xD5xDic3φ: C4xD5/D10C2 ⊆ Aut C6120C6:3(C4xD5)240,139

Non-split extensions G=N.Q with N=C6 and Q=C4xD5
extensionφ:Q→Aut NdρLabelID
C6.1(C4xD5) = D15:2C8φ: C4xD5/Dic5C2 ⊆ Aut C61204C6.1(C4xD5)240,9
C6.2(C4xD5) = D30.5C4φ: C4xD5/Dic5C2 ⊆ Aut C61204C6.2(C4xD5)240,12
C6.3(C4xD5) = D30:4C4φ: C4xD5/Dic5C2 ⊆ Aut C6120C6.3(C4xD5)240,28
C6.4(C4xD5) = Dic15:5C4φ: C4xD5/Dic5C2 ⊆ Aut C6240C6.4(C4xD5)240,30
C6.5(C4xD5) = C8xD15φ: C4xD5/C20C2 ⊆ Aut C61202C6.5(C4xD5)240,65
C6.6(C4xD5) = C40:S3φ: C4xD5/C20C2 ⊆ Aut C61202C6.6(C4xD5)240,66
C6.7(C4xD5) = C4xDic15φ: C4xD5/C20C2 ⊆ Aut C6240C6.7(C4xD5)240,72
C6.8(C4xD5) = C30.4Q8φ: C4xD5/C20C2 ⊆ Aut C6240C6.8(C4xD5)240,73
C6.9(C4xD5) = D30:3C4φ: C4xD5/C20C2 ⊆ Aut C6120C6.9(C4xD5)240,75
C6.10(C4xD5) = D5xC3:C8φ: C4xD5/D10C2 ⊆ Aut C61204C6.10(C4xD5)240,7
C6.11(C4xD5) = C20.32D6φ: C4xD5/D10C2 ⊆ Aut C61204C6.11(C4xD5)240,10
C6.12(C4xD5) = Dic3xDic5φ: C4xD5/D10C2 ⊆ Aut C6240C6.12(C4xD5)240,25
C6.13(C4xD5) = D10:Dic3φ: C4xD5/D10C2 ⊆ Aut C6120C6.13(C4xD5)240,26
C6.14(C4xD5) = C30.Q8φ: C4xD5/D10C2 ⊆ Aut C6240C6.14(C4xD5)240,29
C6.15(C4xD5) = D5xC24central extension (φ=1)1202C6.15(C4xD5)240,33
C6.16(C4xD5) = C3xC8:D5central extension (φ=1)1202C6.16(C4xD5)240,34
C6.17(C4xD5) = C12xDic5central extension (φ=1)240C6.17(C4xD5)240,40
C6.18(C4xD5) = C3xC10.D4central extension (φ=1)240C6.18(C4xD5)240,41
C6.19(C4xD5) = C3xD10:C4central extension (φ=1)120C6.19(C4xD5)240,43

׿
x
:
Z
F
o
wr
Q
<