Extensions 1→N→G→Q→1 with N=M4(2) and Q=D7

Direct product G=N×Q with N=M4(2) and Q=D7
dρLabelID
D7×M4(2)564D7xM4(2)224,101

Semidirect products G=N:Q with N=M4(2) and Q=D7
extensionφ:Q→Out NdρLabelID
M4(2)⋊1D7 = C8⋊D14φ: D7/C7C2 ⊆ Out M4(2)564+M4(2):1D7224,103
M4(2)⋊2D7 = C8.D14φ: D7/C7C2 ⊆ Out M4(2)1124-M4(2):2D7224,104
M4(2)⋊3D7 = C28.46D4φ: D7/C7C2 ⊆ Out M4(2)564+M4(2):3D7224,29
M4(2)⋊4D7 = D284C4φ: D7/C7C2 ⊆ Out M4(2)564M4(2):4D7224,31
M4(2)⋊5D7 = D28.C4φ: trivial image1124M4(2):5D7224,102

Non-split extensions G=N.Q with N=M4(2) and Q=D7
extensionφ:Q→Out NdρLabelID
M4(2).1D7 = C28.53D4φ: D7/C7C2 ⊆ Out M4(2)1124M4(2).1D7224,28
M4(2).2D7 = C4.12D28φ: D7/C7C2 ⊆ Out M4(2)1124-M4(2).2D7224,30

׿
×
𝔽