Copied to
clipboard

G = C28.53D4order 224 = 25·7

10th non-split extension by C28 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C28.53D4, M4(2).1D7, C22.1Dic14, C7⋊C8.1C4, (C2×C14).Q8, C28.5(C2×C4), C4.13(C4×D7), C14.8(C4⋊C4), C72(C8.C4), (C2×C4).37D14, C4.28(C7⋊D4), C4.Dic7.2C2, C2.5(Dic7⋊C4), (C2×C28).12C22, (C7×M4(2)).1C2, (C2×C7⋊C8).4C2, SmallGroup(224,28)

Series: Derived Chief Lower central Upper central

C1C28 — C28.53D4
C1C7C14C28C2×C28C2×C7⋊C8 — C28.53D4
C7C14C28 — C28.53D4
C1C4C2×C4M4(2)

Generators and relations for C28.53D4
 G = < a,b,c | a28=1, b4=a14, c2=a21, bab-1=cac-1=a13, cbc-1=a14b3 >

2C2
2C14
2C8
7C8
7C8
14C8
7M4(2)
7C2×C8
2C56
2C7⋊C8
7C8.C4

Smallest permutation representation of C28.53D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 67 8 74 15 81 22 60)(2 80 9 59 16 66 23 73)(3 65 10 72 17 79 24 58)(4 78 11 57 18 64 25 71)(5 63 12 70 19 77 26 84)(6 76 13 83 20 62 27 69)(7 61 14 68 21 75 28 82)(29 99 50 92 43 85 36 106)(30 112 51 105 44 98 37 91)(31 97 52 90 45 111 38 104)(32 110 53 103 46 96 39 89)(33 95 54 88 47 109 40 102)(34 108 55 101 48 94 41 87)(35 93 56 86 49 107 42 100)
(1 109 22 102 15 95 8 88)(2 94 23 87 16 108 9 101)(3 107 24 100 17 93 10 86)(4 92 25 85 18 106 11 99)(5 105 26 98 19 91 12 112)(6 90 27 111 20 104 13 97)(7 103 28 96 21 89 14 110)(29 78 50 71 43 64 36 57)(30 63 51 84 44 77 37 70)(31 76 52 69 45 62 38 83)(32 61 53 82 46 75 39 68)(33 74 54 67 47 60 40 81)(34 59 55 80 48 73 41 66)(35 72 56 65 49 58 42 79)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,67,8,74,15,81,22,60)(2,80,9,59,16,66,23,73)(3,65,10,72,17,79,24,58)(4,78,11,57,18,64,25,71)(5,63,12,70,19,77,26,84)(6,76,13,83,20,62,27,69)(7,61,14,68,21,75,28,82)(29,99,50,92,43,85,36,106)(30,112,51,105,44,98,37,91)(31,97,52,90,45,111,38,104)(32,110,53,103,46,96,39,89)(33,95,54,88,47,109,40,102)(34,108,55,101,48,94,41,87)(35,93,56,86,49,107,42,100), (1,109,22,102,15,95,8,88)(2,94,23,87,16,108,9,101)(3,107,24,100,17,93,10,86)(4,92,25,85,18,106,11,99)(5,105,26,98,19,91,12,112)(6,90,27,111,20,104,13,97)(7,103,28,96,21,89,14,110)(29,78,50,71,43,64,36,57)(30,63,51,84,44,77,37,70)(31,76,52,69,45,62,38,83)(32,61,53,82,46,75,39,68)(33,74,54,67,47,60,40,81)(34,59,55,80,48,73,41,66)(35,72,56,65,49,58,42,79)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,67,8,74,15,81,22,60)(2,80,9,59,16,66,23,73)(3,65,10,72,17,79,24,58)(4,78,11,57,18,64,25,71)(5,63,12,70,19,77,26,84)(6,76,13,83,20,62,27,69)(7,61,14,68,21,75,28,82)(29,99,50,92,43,85,36,106)(30,112,51,105,44,98,37,91)(31,97,52,90,45,111,38,104)(32,110,53,103,46,96,39,89)(33,95,54,88,47,109,40,102)(34,108,55,101,48,94,41,87)(35,93,56,86,49,107,42,100), (1,109,22,102,15,95,8,88)(2,94,23,87,16,108,9,101)(3,107,24,100,17,93,10,86)(4,92,25,85,18,106,11,99)(5,105,26,98,19,91,12,112)(6,90,27,111,20,104,13,97)(7,103,28,96,21,89,14,110)(29,78,50,71,43,64,36,57)(30,63,51,84,44,77,37,70)(31,76,52,69,45,62,38,83)(32,61,53,82,46,75,39,68)(33,74,54,67,47,60,40,81)(34,59,55,80,48,73,41,66)(35,72,56,65,49,58,42,79) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,67,8,74,15,81,22,60),(2,80,9,59,16,66,23,73),(3,65,10,72,17,79,24,58),(4,78,11,57,18,64,25,71),(5,63,12,70,19,77,26,84),(6,76,13,83,20,62,27,69),(7,61,14,68,21,75,28,82),(29,99,50,92,43,85,36,106),(30,112,51,105,44,98,37,91),(31,97,52,90,45,111,38,104),(32,110,53,103,46,96,39,89),(33,95,54,88,47,109,40,102),(34,108,55,101,48,94,41,87),(35,93,56,86,49,107,42,100)], [(1,109,22,102,15,95,8,88),(2,94,23,87,16,108,9,101),(3,107,24,100,17,93,10,86),(4,92,25,85,18,106,11,99),(5,105,26,98,19,91,12,112),(6,90,27,111,20,104,13,97),(7,103,28,96,21,89,14,110),(29,78,50,71,43,64,36,57),(30,63,51,84,44,77,37,70),(31,76,52,69,45,62,38,83),(32,61,53,82,46,75,39,68),(33,74,54,67,47,60,40,81),(34,59,55,80,48,73,41,66),(35,72,56,65,49,58,42,79)]])

C28.53D4 is a maximal subgroup of
D28.2D4  D28.3D4  D28.6D4  D28.7D4  M4(2).22D14  C42.196D14  D7×C8.C4  M4(2).25D14  C23.Dic14  C56.93D4  C56.50D4  M4(2).D14  M4(2).13D14  M4(2).15D14  M4(2).16D14
C28.53D4 is a maximal quotient of
C28.53D8  C28.39SD16  C28.4C42

44 conjugacy classes

class 1 2A2B4A4B4C7A7B7C8A8B8C8D8E8F8G8H14A14B14C14D14E14F28A···28F28G28H28I56A···56L
order1224447778888888814141414141428···2828282856···56
size112112222441414141428282224442···24444···4

44 irreducible representations

dim11111222222224
type+++++-++-
imageC1C2C2C2C4D4Q8D7D14C8.C4C4×D7C7⋊D4Dic14C28.53D4
kernelC28.53D4C2×C7⋊C8C4.Dic7C7×M4(2)C7⋊C8C28C2×C14M4(2)C2×C4C7C4C4C22C1
# reps11114113346666

Matrix representation of C28.53D4 in GL4(𝔽113) generated by

1010400
992400
00980
00098
,
6111000
735200
00690
004795
,
82400
423100
003936
0010874
G:=sub<GL(4,GF(113))| [10,99,0,0,104,24,0,0,0,0,98,0,0,0,0,98],[61,73,0,0,110,52,0,0,0,0,69,47,0,0,0,95],[82,42,0,0,4,31,0,0,0,0,39,108,0,0,36,74] >;

C28.53D4 in GAP, Magma, Sage, TeX

C_{28}._{53}D_4
% in TeX

G:=Group("C28.53D4");
// GroupNames label

G:=SmallGroup(224,28);
// by ID

G=gap.SmallGroup(224,28);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,48,121,31,86,297,69,6917]);
// Polycyclic

G:=Group<a,b,c|a^28=1,b^4=a^14,c^2=a^21,b*a*b^-1=c*a*c^-1=a^13,c*b*c^-1=a^14*b^3>;
// generators/relations

Export

Subgroup lattice of C28.53D4 in TeX

׿
×
𝔽