Extensions 1→N→G→Q→1 with N=C6 and Q=D20

Direct product G=N×Q with N=C6 and Q=D20
dρLabelID
C6×D20120C6xD20240,157

Semidirect products G=N:Q with N=C6 and Q=D20
extensionφ:Q→Aut NdρLabelID
C61D20 = C2×D60φ: D20/C20C2 ⊆ Aut C6120C6:1D20240,177
C62D20 = C2×C3⋊D20φ: D20/D10C2 ⊆ Aut C6120C6:2D20240,146

Non-split extensions G=N.Q with N=C6 and Q=D20
extensionφ:Q→Aut NdρLabelID
C6.1D20 = C24⋊D5φ: D20/C20C2 ⊆ Aut C61202C6.1D20240,67
C6.2D20 = D120φ: D20/C20C2 ⊆ Aut C61202+C6.2D20240,68
C6.3D20 = Dic60φ: D20/C20C2 ⊆ Aut C62402-C6.3D20240,69
C6.4D20 = C605C4φ: D20/C20C2 ⊆ Aut C6240C6.4D20240,74
C6.5D20 = D303C4φ: D20/C20C2 ⊆ Aut C6120C6.5D20240,75
C6.6D20 = C3⋊D40φ: D20/D10C2 ⊆ Aut C61204+C6.6D20240,14
C6.7D20 = C6.D20φ: D20/D10C2 ⊆ Aut C61204-C6.7D20240,18
C6.8D20 = C15⋊SD16φ: D20/D10C2 ⊆ Aut C61204+C6.8D20240,19
C6.9D20 = C3⋊Dic20φ: D20/D10C2 ⊆ Aut C62404-C6.9D20240,23
C6.10D20 = D10⋊Dic3φ: D20/D10C2 ⊆ Aut C6120C6.10D20240,26
C6.11D20 = D304C4φ: D20/D10C2 ⊆ Aut C6120C6.11D20240,28
C6.12D20 = C6.Dic10φ: D20/D10C2 ⊆ Aut C6240C6.12D20240,31
C6.13D20 = C3×C40⋊C2central extension (φ=1)1202C6.13D20240,35
C6.14D20 = C3×D40central extension (φ=1)1202C6.14D20240,36
C6.15D20 = C3×Dic20central extension (φ=1)2402C6.15D20240,37
C6.16D20 = C3×C4⋊Dic5central extension (φ=1)240C6.16D20240,42
C6.17D20 = C3×D10⋊C4central extension (φ=1)120C6.17D20240,43

׿
×
𝔽