Copied to
clipboard

G = C2×He5order 250 = 2·53

Direct product of C2 and He5

direct product, metabelian, nilpotent (class 2), monomial, 5-elementary

Aliases: C2×He5, C522C10, C10.1C52, (C5×C10)⋊C5, C5.1(C5×C10), SmallGroup(250,10)

Series: Derived Chief Lower central Upper central

C1C5 — C2×He5
C1C5C52He5 — C2×He5
C1C5 — C2×He5
C1C10 — C2×He5

Generators and relations for C2×He5
 G = < a,b,c,d | a2=b5=c5=d5=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, cd=dc >

5C5
5C5
5C5
5C5
5C5
5C5
5C10
5C10
5C10
5C10
5C10
5C10

Smallest permutation representation of C2×He5
On 50 points
Generators in S50
(1 11)(2 12)(3 13)(4 14)(5 15)(6 39)(7 40)(8 36)(9 37)(10 38)(16 32)(17 33)(18 34)(19 35)(20 31)(21 44)(22 45)(23 41)(24 42)(25 43)(26 50)(27 46)(28 47)(29 48)(30 49)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)
(1 43 29 33 39)(2 44 30 34 40)(3 45 26 35 36)(4 41 27 31 37)(5 42 28 32 38)(6 11 25 48 17)(7 12 21 49 18)(8 13 22 50 19)(9 14 23 46 20)(10 15 24 47 16)
(1 2 36 27 38)(3 31 5 43 44)(4 28 33 34 26)(6 7 19 23 16)(8 46 10 11 12)(9 24 48 49 22)(13 20 15 25 21)(14 47 17 18 50)(29 30 45 37 42)(32 39 40 35 41)

G:=sub<Sym(50)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,39)(7,40)(8,36)(9,37)(10,38)(16,32)(17,33)(18,34)(19,35)(20,31)(21,44)(22,45)(23,41)(24,42)(25,43)(26,50)(27,46)(28,47)(29,48)(30,49), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,43,29,33,39)(2,44,30,34,40)(3,45,26,35,36)(4,41,27,31,37)(5,42,28,32,38)(6,11,25,48,17)(7,12,21,49,18)(8,13,22,50,19)(9,14,23,46,20)(10,15,24,47,16), (1,2,36,27,38)(3,31,5,43,44)(4,28,33,34,26)(6,7,19,23,16)(8,46,10,11,12)(9,24,48,49,22)(13,20,15,25,21)(14,47,17,18,50)(29,30,45,37,42)(32,39,40,35,41)>;

G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,39)(7,40)(8,36)(9,37)(10,38)(16,32)(17,33)(18,34)(19,35)(20,31)(21,44)(22,45)(23,41)(24,42)(25,43)(26,50)(27,46)(28,47)(29,48)(30,49), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50), (1,43,29,33,39)(2,44,30,34,40)(3,45,26,35,36)(4,41,27,31,37)(5,42,28,32,38)(6,11,25,48,17)(7,12,21,49,18)(8,13,22,50,19)(9,14,23,46,20)(10,15,24,47,16), (1,2,36,27,38)(3,31,5,43,44)(4,28,33,34,26)(6,7,19,23,16)(8,46,10,11,12)(9,24,48,49,22)(13,20,15,25,21)(14,47,17,18,50)(29,30,45,37,42)(32,39,40,35,41) );

G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,39),(7,40),(8,36),(9,37),(10,38),(16,32),(17,33),(18,34),(19,35),(20,31),(21,44),(22,45),(23,41),(24,42),(25,43),(26,50),(27,46),(28,47),(29,48),(30,49)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50)], [(1,43,29,33,39),(2,44,30,34,40),(3,45,26,35,36),(4,41,27,31,37),(5,42,28,32,38),(6,11,25,48,17),(7,12,21,49,18),(8,13,22,50,19),(9,14,23,46,20),(10,15,24,47,16)], [(1,2,36,27,38),(3,31,5,43,44),(4,28,33,34,26),(6,7,19,23,16),(8,46,10,11,12),(9,24,48,49,22),(13,20,15,25,21),(14,47,17,18,50),(29,30,45,37,42),(32,39,40,35,41)]])

C2×He5 is a maximal subgroup of   He55C4  He56C4

58 conjugacy classes

class 1  2 5A5B5C5D5E···5AB10A10B10C10D10E···10AB
order1255555···51010101010···10
size1111115···511115···5

58 irreducible representations

dim111155
type++
imageC1C2C5C10He5C2×He5
kernelC2×He5He5C5×C10C52C2C1
# reps11242444

Matrix representation of C2×He5 in GL6(𝔽11)

1000000
010000
001000
000100
000010
000001
,
100000
041172
000900
000050
000004
028267
,
100000
040000
004000
000400
000040
000004
,
300000
040000
000100
000010
000001
028267

G:=sub<GL(6,GF(11))| [10,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,4,0,0,0,2,0,1,0,0,0,8,0,1,9,0,0,2,0,7,0,5,0,6,0,2,0,0,4,7],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[3,0,0,0,0,0,0,4,0,0,0,2,0,0,0,0,0,8,0,0,1,0,0,2,0,0,0,1,0,6,0,0,0,0,1,7] >;

C2×He5 in GAP, Magma, Sage, TeX

C_2\times {\rm He}_5
% in TeX

G:=Group("C2xHe5");
// GroupNames label

G:=SmallGroup(250,10);
// by ID

G=gap.SmallGroup(250,10);
# by ID

G:=PCGroup([4,-2,-5,-5,-5,366]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^5=c^5=d^5=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,c*d=d*c>;
// generators/relations

Export

Subgroup lattice of C2×He5 in TeX

׿
×
𝔽