Copied to
clipboard

G = C2×5- 1+2order 250 = 2·53

Direct product of C2 and 5- 1+2

direct product, metacyclic, nilpotent (class 2), monomial, 5-elementary

Aliases: C2×5- 1+2, C50⋊C5, C252C10, C52.C10, C10.2C52, (C5×C10).C5, C5.2(C5×C10), SmallGroup(250,11)

Series: Derived Chief Lower central Upper central

C1C5 — C2×5- 1+2
C1C5C525- 1+2 — C2×5- 1+2
C1C5 — C2×5- 1+2
C1C10 — C2×5- 1+2

Generators and relations for C2×5- 1+2
 G = < a,b,c | a2=b25=c5=1, ab=ba, ac=ca, cbc-1=b6 >

5C5
5C10

Smallest permutation representation of C2×5- 1+2
On 50 points
Generators in S50
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 6 11 16 21)(3 23 18 13 8)(4 19 9 24 14)(5 15 25 10 20)(27 47 42 37 32)(28 43 33 48 38)(29 39 49 34 44)(30 35 40 45 50)

G:=sub<Sym(50)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)>;

G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50) );

G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,6,11,16,21),(3,23,18,13,8),(4,19,9,24,14),(5,15,25,10,20),(27,47,42,37,32),(28,43,33,48,38),(29,39,49,34,44),(30,35,40,45,50)]])

C2×5- 1+2 is a maximal subgroup of   C50.C10

58 conjugacy classes

class 1  2 5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H25A···25T50A···50T
order1255555555101010101010101025···2550···50
size1111115555111155555···55···5

58 irreducible representations

dim11111155
type++
imageC1C2C5C5C10C105- 1+2C2×5- 1+2
kernelC2×5- 1+25- 1+2C50C5×C10C25C52C2C1
# reps1120420444

Matrix representation of C2×5- 1+2 in GL5(𝔽101)

1000000
0100000
0010000
0001000
0000100
,
084000
00100
000950
000036
10000
,
360000
084000
009500
000870
00001

G:=sub<GL(5,GF(101))| [100,0,0,0,0,0,100,0,0,0,0,0,100,0,0,0,0,0,100,0,0,0,0,0,100],[0,0,0,0,1,84,0,0,0,0,0,1,0,0,0,0,0,95,0,0,0,0,0,36,0],[36,0,0,0,0,0,84,0,0,0,0,0,95,0,0,0,0,0,87,0,0,0,0,0,1] >;

C2×5- 1+2 in GAP, Magma, Sage, TeX

C_2\times 5_-^{1+2}
% in TeX

G:=Group("C2xES-(5,1)");
// GroupNames label

G:=SmallGroup(250,11);
// by ID

G=gap.SmallGroup(250,11);
# by ID

G:=PCGroup([4,-2,-5,-5,-5,205,1266]);
// Polycyclic

G:=Group<a,b,c|a^2=b^25=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations

Export

Subgroup lattice of C2×5- 1+2 in TeX

׿
×
𝔽