direct product, metacyclic, nilpotent (class 2), monomial, 5-elementary
Aliases: C2×5- 1+2, C50⋊C5, C25⋊2C10, C52.C10, C10.2C52, (C5×C10).C5, C5.2(C5×C10), SmallGroup(250,11)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — 5- 1+2 — C2×5- 1+2 |
Generators and relations for C2×5- 1+2
G = < a,b,c | a2=b25=c5=1, ab=ba, ac=ca, cbc-1=b6 >
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 6 11 16 21)(3 23 18 13 8)(4 19 9 24 14)(5 15 25 10 20)(27 47 42 37 32)(28 43 33 48 38)(29 39 49 34 44)(30 35 40 45 50)
G:=sub<Sym(50)| (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)>;
G:=Group( (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(21,40)(22,41)(23,42)(24,43)(25,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50) );
G=PermutationGroup([[(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(21,40),(22,41),(23,42),(24,43),(25,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,6,11,16,21),(3,23,18,13,8),(4,19,9,24,14),(5,15,25,10,20),(27,47,42,37,32),(28,43,33,48,38),(29,39,49,34,44),(30,35,40,45,50)]])
C2×5- 1+2 is a maximal subgroup of
C50.C10
58 conjugacy classes
class | 1 | 2 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 25A | ··· | 25T | 50A | ··· | 50T |
order | 1 | 2 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 25 | ··· | 25 | 50 | ··· | 50 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 5 | ··· | 5 |
58 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 |
type | + | + | ||||||
image | C1 | C2 | C5 | C5 | C10 | C10 | 5- 1+2 | C2×5- 1+2 |
kernel | C2×5- 1+2 | 5- 1+2 | C50 | C5×C10 | C25 | C52 | C2 | C1 |
# reps | 1 | 1 | 20 | 4 | 20 | 4 | 4 | 4 |
Matrix representation of C2×5- 1+2 ►in GL5(𝔽101)
100 | 0 | 0 | 0 | 0 |
0 | 100 | 0 | 0 | 0 |
0 | 0 | 100 | 0 | 0 |
0 | 0 | 0 | 100 | 0 |
0 | 0 | 0 | 0 | 100 |
0 | 84 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 95 | 0 |
0 | 0 | 0 | 0 | 36 |
1 | 0 | 0 | 0 | 0 |
36 | 0 | 0 | 0 | 0 |
0 | 84 | 0 | 0 | 0 |
0 | 0 | 95 | 0 | 0 |
0 | 0 | 0 | 87 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(101))| [100,0,0,0,0,0,100,0,0,0,0,0,100,0,0,0,0,0,100,0,0,0,0,0,100],[0,0,0,0,1,84,0,0,0,0,0,1,0,0,0,0,0,95,0,0,0,0,0,36,0],[36,0,0,0,0,0,84,0,0,0,0,0,95,0,0,0,0,0,87,0,0,0,0,0,1] >;
C2×5- 1+2 in GAP, Magma, Sage, TeX
C_2\times 5_-^{1+2}
% in TeX
G:=Group("C2xES-(5,1)");
// GroupNames label
G:=SmallGroup(250,11);
// by ID
G=gap.SmallGroup(250,11);
# by ID
G:=PCGroup([4,-2,-5,-5,-5,205,1266]);
// Polycyclic
G:=Group<a,b,c|a^2=b^25=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations
Export