Copied to
clipboard

G = D5×C25order 250 = 2·53

Direct product of C25 and D5

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D5×C25, C5⋊C50, C52.2C10, (C5×C25)⋊1C2, (C5×D5).C5, C5.4(C5×D5), SmallGroup(250,4)

Series: Derived Chief Lower central Upper central

C1C5 — D5×C25
C1C5C52C5×C25 — D5×C25
C5 — D5×C25
C1C25

Generators and relations for D5×C25
 G = < a,b,c | a25=b5=c2=1, ab=ba, ac=ca, cbc=b-1 >

5C2
2C5
2C5
5C10
2C25
2C25
5C50

Smallest permutation representation of D5×C25
On 50 points
Generators in S50
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)
(1 21 16 11 6)(2 22 17 12 7)(3 23 18 13 8)(4 24 19 14 9)(5 25 20 15 10)(26 31 36 41 46)(27 32 37 42 47)(28 33 38 43 48)(29 34 39 44 49)(30 35 40 45 50)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 26)(24 27)(25 28)

G:=sub<Sym(50)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,21,16,11,6)(2,22,17,12,7)(3,23,18,13,8)(4,24,19,14,9)(5,25,20,15,10)(26,31,36,41,46)(27,32,37,42,47)(28,33,38,43,48)(29,34,39,44,49)(30,35,40,45,50), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,26)(24,27)(25,28)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50), (1,21,16,11,6)(2,22,17,12,7)(3,23,18,13,8)(4,24,19,14,9)(5,25,20,15,10)(26,31,36,41,46)(27,32,37,42,47)(28,33,38,43,48)(29,34,39,44,49)(30,35,40,45,50), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,26)(24,27)(25,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)], [(1,21,16,11,6),(2,22,17,12,7),(3,23,18,13,8),(4,24,19,14,9),(5,25,20,15,10),(26,31,36,41,46),(27,32,37,42,47),(28,33,38,43,48),(29,34,39,44,49),(30,35,40,45,50)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,26),(24,27),(25,28)]])

D5×C25 is a maximal subgroup of   D5.D25

100 conjugacy classes

class 1  2 5A5B5C5D5E···5N10A10B10C10D25A···25T25U···25BH50A···50T
order1255555···51010101025···2525···2550···50
size1511112···255551···12···25···5

100 irreducible representations

dim111111222
type+++
imageC1C2C5C10C25C50D5C5×D5D5×C25
kernelD5×C25C5×C25C5×D5C52D5C5C25C5C1
# reps114420202840

Matrix representation of D5×C25 in GL2(𝔽101) generated by

790
079
,
840
9795
,
257
8476
G:=sub<GL(2,GF(101))| [79,0,0,79],[84,97,0,95],[25,84,7,76] >;

D5×C25 in GAP, Magma, Sage, TeX

D_5\times C_{25}
% in TeX

G:=Group("D5xC25");
// GroupNames label

G:=SmallGroup(250,4);
// by ID

G=gap.SmallGroup(250,4);
# by ID

G:=PCGroup([4,-2,-5,-5,-5,45,3203]);
// Polycyclic

G:=Group<a,b,c|a^25=b^5=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D5×C25 in TeX

׿
×
𝔽