Copied to
clipboard

G = D5.D25order 500 = 22·53

The non-split extension by D5 of D25 acting via D25/C25=C2

metabelian, supersoluble, monomial, A-group

Aliases: D5.D25, C5⋊Dic25, C253F5, C52.2Dic5, (C5×C25)⋊2C4, (C5×D5).2D5, (D5×C25).2C2, C5.3(D5.D5), SmallGroup(500,19)

Series: Derived Chief Lower central Upper central

C1C5×C25 — D5.D25
C1C5C52C5×C25D5×C25 — D5.D25
C5×C25 — D5.D25
C1

Generators and relations for D5.D25
 G = < a,b,c,d | a5=b2=c25=1, d2=a-1b, bab=a-1, ac=ca, dad-1=a2, bc=cb, dbd-1=ab, dcd-1=c-1 >

5C2
4C5
125C4
5C10
4C25
25F5
25Dic5
5C50
5Dic25
5D5.D5

Smallest permutation representation of D5.D25
On 100 points
Generators in S100
(1 6 11 16 21)(2 7 12 17 22)(3 8 13 18 23)(4 9 14 19 24)(5 10 15 20 25)(26 46 41 36 31)(27 47 42 37 32)(28 48 43 38 33)(29 49 44 39 34)(30 50 45 40 35)(51 61 71 56 66)(52 62 72 57 67)(53 63 73 58 68)(54 64 74 59 69)(55 65 75 60 70)(76 91 81 96 86)(77 92 82 97 87)(78 93 83 98 88)(79 94 84 99 89)(80 95 85 100 90)
(1 39)(2 40)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 47)(10 48)(11 49)(12 50)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)(25 38)(51 82)(52 83)(53 84)(54 85)(55 86)(56 87)(57 88)(58 89)(59 90)(60 91)(61 92)(62 93)(63 94)(64 95)(65 96)(66 97)(67 98)(68 99)(69 100)(70 76)(71 77)(72 78)(73 79)(74 80)(75 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)
(1 82 34 61)(2 81 35 60)(3 80 36 59)(4 79 37 58)(5 78 38 57)(6 77 39 56)(7 76 40 55)(8 100 41 54)(9 99 42 53)(10 98 43 52)(11 97 44 51)(12 96 45 75)(13 95 46 74)(14 94 47 73)(15 93 48 72)(16 92 49 71)(17 91 50 70)(18 90 26 69)(19 89 27 68)(20 88 28 67)(21 87 29 66)(22 86 30 65)(23 85 31 64)(24 84 32 63)(25 83 33 62)

G:=sub<Sym(100)| (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35)(51,61,71,56,66)(52,62,72,57,67)(53,63,73,58,68)(54,64,74,59,69)(55,65,75,60,70)(76,91,81,96,86)(77,92,82,97,87)(78,93,83,98,88)(79,94,84,99,89)(80,95,85,100,90), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,92)(62,93)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,76)(71,77)(72,78)(73,79)(74,80)(75,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,82,34,61)(2,81,35,60)(3,80,36,59)(4,79,37,58)(5,78,38,57)(6,77,39,56)(7,76,40,55)(8,100,41,54)(9,99,42,53)(10,98,43,52)(11,97,44,51)(12,96,45,75)(13,95,46,74)(14,94,47,73)(15,93,48,72)(16,92,49,71)(17,91,50,70)(18,90,26,69)(19,89,27,68)(20,88,28,67)(21,87,29,66)(22,86,30,65)(23,85,31,64)(24,84,32,63)(25,83,33,62)>;

G:=Group( (1,6,11,16,21)(2,7,12,17,22)(3,8,13,18,23)(4,9,14,19,24)(5,10,15,20,25)(26,46,41,36,31)(27,47,42,37,32)(28,48,43,38,33)(29,49,44,39,34)(30,50,45,40,35)(51,61,71,56,66)(52,62,72,57,67)(53,63,73,58,68)(54,64,74,59,69)(55,65,75,60,70)(76,91,81,96,86)(77,92,82,97,87)(78,93,83,98,88)(79,94,84,99,89)(80,95,85,100,90), (1,39)(2,40)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,47)(10,48)(11,49)(12,50)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37)(25,38)(51,82)(52,83)(53,84)(54,85)(55,86)(56,87)(57,88)(58,89)(59,90)(60,91)(61,92)(62,93)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,76)(71,77)(72,78)(73,79)(74,80)(75,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100), (1,82,34,61)(2,81,35,60)(3,80,36,59)(4,79,37,58)(5,78,38,57)(6,77,39,56)(7,76,40,55)(8,100,41,54)(9,99,42,53)(10,98,43,52)(11,97,44,51)(12,96,45,75)(13,95,46,74)(14,94,47,73)(15,93,48,72)(16,92,49,71)(17,91,50,70)(18,90,26,69)(19,89,27,68)(20,88,28,67)(21,87,29,66)(22,86,30,65)(23,85,31,64)(24,84,32,63)(25,83,33,62) );

G=PermutationGroup([[(1,6,11,16,21),(2,7,12,17,22),(3,8,13,18,23),(4,9,14,19,24),(5,10,15,20,25),(26,46,41,36,31),(27,47,42,37,32),(28,48,43,38,33),(29,49,44,39,34),(30,50,45,40,35),(51,61,71,56,66),(52,62,72,57,67),(53,63,73,58,68),(54,64,74,59,69),(55,65,75,60,70),(76,91,81,96,86),(77,92,82,97,87),(78,93,83,98,88),(79,94,84,99,89),(80,95,85,100,90)], [(1,39),(2,40),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,47),(10,48),(11,49),(12,50),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37),(25,38),(51,82),(52,83),(53,84),(54,85),(55,86),(56,87),(57,88),(58,89),(59,90),(60,91),(61,92),(62,93),(63,94),(64,95),(65,96),(66,97),(67,98),(68,99),(69,100),(70,76),(71,77),(72,78),(73,79),(74,80),(75,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)], [(1,82,34,61),(2,81,35,60),(3,80,36,59),(4,79,37,58),(5,78,38,57),(6,77,39,56),(7,76,40,55),(8,100,41,54),(9,99,42,53),(10,98,43,52),(11,97,44,51),(12,96,45,75),(13,95,46,74),(14,94,47,73),(15,93,48,72),(16,92,49,71),(17,91,50,70),(18,90,26,69),(19,89,27,68),(20,88,28,67),(21,87,29,66),(22,86,30,65),(23,85,31,64),(24,84,32,63),(25,83,33,62)]])

53 conjugacy classes

class 1  2 4A4B5A5B5C···5G10A10B25A···25J25K···25AD50A···50J
order1244555···5101025···2525···2550···50
size15125125224···410102···24···410···10

53 irreducible representations

dim1112222444
type+++-+-+
imageC1C2C4D5Dic5D25Dic25F5D5.D5D5.D25
kernelD5.D25D5×C25C5×C25C5×D5C52D5C5C25C5C1
# reps1122210101420

Matrix representation of D5.D25 in GL4(𝔽101) generated by

87000
03600
00840
00095
,
03600
87000
00095
00840
,
24000
02400
00800
00080
,
00800
00080
02400
24000
G:=sub<GL(4,GF(101))| [87,0,0,0,0,36,0,0,0,0,84,0,0,0,0,95],[0,87,0,0,36,0,0,0,0,0,0,84,0,0,95,0],[24,0,0,0,0,24,0,0,0,0,80,0,0,0,0,80],[0,0,0,24,0,0,24,0,80,0,0,0,0,80,0,0] >;

D5.D25 in GAP, Magma, Sage, TeX

D_5.D_{25}
% in TeX

G:=Group("D5.D25");
// GroupNames label

G:=SmallGroup(500,19);
// by ID

G=gap.SmallGroup(500,19);
# by ID

G:=PCGroup([5,-2,-2,-5,-5,-5,10,1742,1512,1203,808,10004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^25=1,d^2=a^-1*b,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^2,b*c=c*b,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D5.D25 in TeX

׿
×
𝔽