Copied to
clipboard

G = S3×C41order 246 = 2·3·41

Direct product of C41 and S3

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: S3×C41, C3⋊C82, C1233C2, SmallGroup(246,1)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C41
C1C3C123 — S3×C41
C3 — S3×C41
C1C41

Generators and relations for S3×C41
 G = < a,b,c | a41=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C82

Smallest permutation representation of S3×C41
On 123 points
Generators in S123
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)(83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123)
(1 81 90)(2 82 91)(3 42 92)(4 43 93)(5 44 94)(6 45 95)(7 46 96)(8 47 97)(9 48 98)(10 49 99)(11 50 100)(12 51 101)(13 52 102)(14 53 103)(15 54 104)(16 55 105)(17 56 106)(18 57 107)(19 58 108)(20 59 109)(21 60 110)(22 61 111)(23 62 112)(24 63 113)(25 64 114)(26 65 115)(27 66 116)(28 67 117)(29 68 118)(30 69 119)(31 70 120)(32 71 121)(33 72 122)(34 73 123)(35 74 83)(36 75 84)(37 76 85)(38 77 86)(39 78 87)(40 79 88)(41 80 89)
(42 92)(43 93)(44 94)(45 95)(46 96)(47 97)(48 98)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 105)(56 106)(57 107)(58 108)(59 109)(60 110)(61 111)(62 112)(63 113)(64 114)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 121)(72 122)(73 123)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(82 91)

G:=sub<Sym(123)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,81,90)(2,82,91)(3,42,92)(4,43,93)(5,44,94)(6,45,95)(7,46,96)(8,47,97)(9,48,98)(10,49,99)(11,50,100)(12,51,101)(13,52,102)(14,53,103)(15,54,104)(16,55,105)(17,56,106)(18,57,107)(19,58,108)(20,59,109)(21,60,110)(22,61,111)(23,62,112)(24,63,113)(25,64,114)(26,65,115)(27,66,116)(28,67,117)(29,68,118)(30,69,119)(31,70,120)(32,71,121)(33,72,122)(34,73,123)(35,74,83)(36,75,84)(37,76,85)(38,77,86)(39,78,87)(40,79,88)(41,80,89), (42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,121)(72,122)(73,123)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,81,90)(2,82,91)(3,42,92)(4,43,93)(5,44,94)(6,45,95)(7,46,96)(8,47,97)(9,48,98)(10,49,99)(11,50,100)(12,51,101)(13,52,102)(14,53,103)(15,54,104)(16,55,105)(17,56,106)(18,57,107)(19,58,108)(20,59,109)(21,60,110)(22,61,111)(23,62,112)(24,63,113)(25,64,114)(26,65,115)(27,66,116)(28,67,117)(29,68,118)(30,69,119)(31,70,120)(32,71,121)(33,72,122)(34,73,123)(35,74,83)(36,75,84)(37,76,85)(38,77,86)(39,78,87)(40,79,88)(41,80,89), (42,92)(43,93)(44,94)(45,95)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,121)(72,122)(73,123)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(82,91) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82),(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123)], [(1,81,90),(2,82,91),(3,42,92),(4,43,93),(5,44,94),(6,45,95),(7,46,96),(8,47,97),(9,48,98),(10,49,99),(11,50,100),(12,51,101),(13,52,102),(14,53,103),(15,54,104),(16,55,105),(17,56,106),(18,57,107),(19,58,108),(20,59,109),(21,60,110),(22,61,111),(23,62,112),(24,63,113),(25,64,114),(26,65,115),(27,66,116),(28,67,117),(29,68,118),(30,69,119),(31,70,120),(32,71,121),(33,72,122),(34,73,123),(35,74,83),(36,75,84),(37,76,85),(38,77,86),(39,78,87),(40,79,88),(41,80,89)], [(42,92),(43,93),(44,94),(45,95),(46,96),(47,97),(48,98),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,105),(56,106),(57,107),(58,108),(59,109),(60,110),(61,111),(62,112),(63,113),(64,114),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,121),(72,122),(73,123),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(82,91)]])

123 conjugacy classes

class 1  2  3 41A···41AN82A···82AN123A···123AN
order12341···4182···82123···123
size1321···13···32···2

123 irreducible representations

dim111122
type+++
imageC1C2C41C82S3S3×C41
kernelS3×C41C123S3C3C41C1
# reps114040140

Matrix representation of S3×C41 in GL3(𝔽739) generated by

63100
010
001
,
100
0738738
010
,
73800
010
0738738
G:=sub<GL(3,GF(739))| [631,0,0,0,1,0,0,0,1],[1,0,0,0,738,1,0,738,0],[738,0,0,0,1,738,0,0,738] >;

S3×C41 in GAP, Magma, Sage, TeX

S_3\times C_{41}
% in TeX

G:=Group("S3xC41");
// GroupNames label

G:=SmallGroup(246,1);
// by ID

G=gap.SmallGroup(246,1);
# by ID

G:=PCGroup([3,-2,-41,-3,1478]);
// Polycyclic

G:=Group<a,b,c|a^41=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C41 in TeX

׿
×
𝔽