Copied to
clipboard

G = C3×D41order 246 = 2·3·41

Direct product of C3 and D41

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C3×D41, C41⋊C6, C1232C2, SmallGroup(246,2)

Series: Derived Chief Lower central Upper central

C1C41 — C3×D41
C1C41C123 — C3×D41
C41 — C3×D41
C1C3

Generators and relations for C3×D41
 G = < a,b,c | a3=b41=c2=1, ab=ba, ac=ca, cbc=b-1 >

41C2
41C6

Smallest permutation representation of C3×D41
On 123 points
Generators in S123
(1 84 55)(2 85 56)(3 86 57)(4 87 58)(5 88 59)(6 89 60)(7 90 61)(8 91 62)(9 92 63)(10 93 64)(11 94 65)(12 95 66)(13 96 67)(14 97 68)(15 98 69)(16 99 70)(17 100 71)(18 101 72)(19 102 73)(20 103 74)(21 104 75)(22 105 76)(23 106 77)(24 107 78)(25 108 79)(26 109 80)(27 110 81)(28 111 82)(29 112 42)(30 113 43)(31 114 44)(32 115 45)(33 116 46)(34 117 47)(35 118 48)(36 119 49)(37 120 50)(38 121 51)(39 122 52)(40 123 53)(41 83 54)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41)(42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82)(83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123)
(1 41)(2 40)(3 39)(4 38)(5 37)(6 36)(7 35)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(18 24)(19 23)(20 22)(42 67)(43 66)(44 65)(45 64)(46 63)(47 62)(48 61)(49 60)(50 59)(51 58)(52 57)(53 56)(54 55)(68 82)(69 81)(70 80)(71 79)(72 78)(73 77)(74 76)(83 84)(85 123)(86 122)(87 121)(88 120)(89 119)(90 118)(91 117)(92 116)(93 115)(94 114)(95 113)(96 112)(97 111)(98 110)(99 109)(100 108)(101 107)(102 106)(103 105)

G:=sub<Sym(123)| (1,84,55)(2,85,56)(3,86,57)(4,87,58)(5,88,59)(6,89,60)(7,90,61)(8,91,62)(9,92,63)(10,93,64)(11,94,65)(12,95,66)(13,96,67)(14,97,68)(15,98,69)(16,99,70)(17,100,71)(18,101,72)(19,102,73)(20,103,74)(21,104,75)(22,105,76)(23,106,77)(24,107,78)(25,108,79)(26,109,80)(27,110,81)(28,111,82)(29,112,42)(30,113,43)(31,114,44)(32,115,45)(33,116,46)(34,117,47)(35,118,48)(36,119,49)(37,120,50)(38,121,51)(39,122,52)(40,123,53)(41,83,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(42,67)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(68,82)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)(83,84)(85,123)(86,122)(87,121)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,105)>;

G:=Group( (1,84,55)(2,85,56)(3,86,57)(4,87,58)(5,88,59)(6,89,60)(7,90,61)(8,91,62)(9,92,63)(10,93,64)(11,94,65)(12,95,66)(13,96,67)(14,97,68)(15,98,69)(16,99,70)(17,100,71)(18,101,72)(19,102,73)(20,103,74)(21,104,75)(22,105,76)(23,106,77)(24,107,78)(25,108,79)(26,109,80)(27,110,81)(28,111,82)(29,112,42)(30,113,43)(31,114,44)(32,115,45)(33,116,46)(34,117,47)(35,118,48)(36,119,49)(37,120,50)(38,121,51)(39,122,52)(40,123,53)(41,83,54), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41)(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82)(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123), (1,41)(2,40)(3,39)(4,38)(5,37)(6,36)(7,35)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(18,24)(19,23)(20,22)(42,67)(43,66)(44,65)(45,64)(46,63)(47,62)(48,61)(49,60)(50,59)(51,58)(52,57)(53,56)(54,55)(68,82)(69,81)(70,80)(71,79)(72,78)(73,77)(74,76)(83,84)(85,123)(86,122)(87,121)(88,120)(89,119)(90,118)(91,117)(92,116)(93,115)(94,114)(95,113)(96,112)(97,111)(98,110)(99,109)(100,108)(101,107)(102,106)(103,105) );

G=PermutationGroup([[(1,84,55),(2,85,56),(3,86,57),(4,87,58),(5,88,59),(6,89,60),(7,90,61),(8,91,62),(9,92,63),(10,93,64),(11,94,65),(12,95,66),(13,96,67),(14,97,68),(15,98,69),(16,99,70),(17,100,71),(18,101,72),(19,102,73),(20,103,74),(21,104,75),(22,105,76),(23,106,77),(24,107,78),(25,108,79),(26,109,80),(27,110,81),(28,111,82),(29,112,42),(30,113,43),(31,114,44),(32,115,45),(33,116,46),(34,117,47),(35,118,48),(36,119,49),(37,120,50),(38,121,51),(39,122,52),(40,123,53),(41,83,54)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41),(42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82),(83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123)], [(1,41),(2,40),(3,39),(4,38),(5,37),(6,36),(7,35),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(18,24),(19,23),(20,22),(42,67),(43,66),(44,65),(45,64),(46,63),(47,62),(48,61),(49,60),(50,59),(51,58),(52,57),(53,56),(54,55),(68,82),(69,81),(70,80),(71,79),(72,78),(73,77),(74,76),(83,84),(85,123),(86,122),(87,121),(88,120),(89,119),(90,118),(91,117),(92,116),(93,115),(94,114),(95,113),(96,112),(97,111),(98,110),(99,109),(100,108),(101,107),(102,106),(103,105)]])

C3×D41 is a maximal subgroup of   C41⋊Dic3

66 conjugacy classes

class 1  2 3A3B6A6B41A···41T123A···123AN
order12336641···41123···123
size1411141412···22···2

66 irreducible representations

dim111122
type+++
imageC1C2C3C6D41C3×D41
kernelC3×D41C123D41C41C3C1
# reps11222040

Matrix representation of C3×D41 in GL3(𝔽739) generated by

32000
010
001
,
100
07161
05494
,
73800
071771
024322
G:=sub<GL(3,GF(739))| [320,0,0,0,1,0,0,0,1],[1,0,0,0,716,54,0,1,94],[738,0,0,0,717,243,0,71,22] >;

C3×D41 in GAP, Magma, Sage, TeX

C_3\times D_{41}
% in TeX

G:=Group("C3xD41");
// GroupNames label

G:=SmallGroup(246,2);
// by ID

G=gap.SmallGroup(246,2);
# by ID

G:=PCGroup([3,-2,-3,-41,2162]);
// Polycyclic

G:=Group<a,b,c|a^3=b^41=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C3×D41 in TeX

׿
×
𝔽