direct product, metabelian, soluble, monomial, A-group
Aliases: A4×D11, C11⋊(C2×A4), (C2×C22)⋊C6, (C22×D11)⋊C3, C22⋊(C3×D11), (C11×A4)⋊2C2, SmallGroup(264,33)
Series: Derived ►Chief ►Lower central ►Upper central
C2×C22 — A4×D11 |
Generators and relations for A4×D11
G = < a,b,c,d,e | a2=b2=c3=d11=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Character table of A4×D11
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 11A | 11B | 11C | 11D | 11E | 22A | 22B | 22C | 22D | 22E | 33A | 33B | 33C | 33D | 33E | 33F | 33G | 33H | 33I | 33J | |
size | 1 | 3 | 11 | 33 | 4 | 4 | 44 | 44 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ7 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ118+ζ113 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | orthogonal lifted from D11 |
ρ8 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ1110+ζ11 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | orthogonal lifted from D11 |
ρ9 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ119+ζ112 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | orthogonal lifted from D11 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ117+ζ114 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | orthogonal lifted from D11 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ116+ζ115 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | orthogonal lifted from D11 |
ρ12 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ32ζ117+ζ32ζ114 | ζ3ζ117+ζ3ζ114 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | complex lifted from C3×D11 |
ρ13 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ3ζ1110+ζ3ζ11 | ζ32ζ1110+ζ32ζ11 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | complex lifted from C3×D11 |
ρ14 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ3ζ119+ζ3ζ112 | ζ32ζ119+ζ32ζ112 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | complex lifted from C3×D11 |
ρ15 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ117+ζ114 | ζ118+ζ113 | ζ1110+ζ11 | ζ116+ζ115 | ζ119+ζ112 | ζ118+ζ113 | ζ119+ζ112 | ζ1110+ζ11 | ζ116+ζ115 | ζ117+ζ114 | ζ3ζ117+ζ3ζ114 | ζ32ζ117+ζ32ζ114 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | complex lifted from C3×D11 |
ρ16 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ3ζ118+ζ3ζ113 | ζ32ζ118+ζ32ζ113 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | complex lifted from C3×D11 |
ρ17 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ32ζ116+ζ32ζ115 | ζ3ζ116+ζ3ζ115 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | complex lifted from C3×D11 |
ρ18 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ119+ζ112 | ζ117+ζ114 | ζ116+ζ115 | ζ118+ζ113 | ζ1110+ζ11 | ζ117+ζ114 | ζ1110+ζ11 | ζ116+ζ115 | ζ118+ζ113 | ζ119+ζ112 | ζ32ζ119+ζ32ζ112 | ζ3ζ119+ζ3ζ112 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ3ζ118+ζ3ζ113 | ζ3ζ1110+ζ3ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ118+ζ32ζ113 | ζ32ζ1110+ζ32ζ11 | complex lifted from C3×D11 |
ρ19 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ1110+ζ11 | ζ119+ζ112 | ζ118+ζ113 | ζ117+ζ114 | ζ116+ζ115 | ζ119+ζ112 | ζ116+ζ115 | ζ118+ζ113 | ζ117+ζ114 | ζ1110+ζ11 | ζ32ζ1110+ζ32ζ11 | ζ3ζ1110+ζ3ζ11 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | ζ3ζ117+ζ3ζ114 | ζ3ζ116+ζ3ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ32ζ117+ζ32ζ114 | ζ32ζ116+ζ32ζ115 | complex lifted from C3×D11 |
ρ20 | 2 | 2 | 0 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | ζ116+ζ115 | ζ1110+ζ11 | ζ117+ζ114 | ζ119+ζ112 | ζ118+ζ113 | ζ1110+ζ11 | ζ118+ζ113 | ζ117+ζ114 | ζ119+ζ112 | ζ116+ζ115 | ζ3ζ116+ζ3ζ115 | ζ32ζ116+ζ32ζ115 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | ζ32ζ119+ζ32ζ112 | ζ32ζ118+ζ32ζ113 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ3ζ119+ζ3ζ112 | ζ3ζ118+ζ3ζ113 | complex lifted from C3×D11 |
ρ21 | 2 | 2 | 0 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | ζ118+ζ113 | ζ116+ζ115 | ζ119+ζ112 | ζ1110+ζ11 | ζ117+ζ114 | ζ116+ζ115 | ζ117+ζ114 | ζ119+ζ112 | ζ1110+ζ11 | ζ118+ζ113 | ζ32ζ118+ζ32ζ113 | ζ3ζ118+ζ3ζ113 | ζ3ζ116+ζ3ζ115 | ζ3ζ119+ζ3ζ112 | ζ3ζ1110+ζ3ζ11 | ζ3ζ117+ζ3ζ114 | ζ32ζ116+ζ32ζ115 | ζ32ζ119+ζ32ζ112 | ζ32ζ1110+ζ32ζ11 | ζ32ζ117+ζ32ζ114 | complex lifted from C3×D11 |
ρ22 | 3 | -1 | -3 | 1 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×A4 |
ρ23 | 3 | -1 | 3 | -1 | 0 | 0 | 0 | 0 | 3 | 3 | 3 | 3 | 3 | -1 | -1 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ24 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ118+3ζ113 | 3ζ116+3ζ115 | 3ζ119+3ζ112 | 3ζ1110+3ζ11 | 3ζ117+3ζ114 | -ζ116-ζ115 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ118-ζ113 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ25 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ116+3ζ115 | 3ζ1110+3ζ11 | 3ζ117+3ζ114 | 3ζ119+3ζ112 | 3ζ118+3ζ113 | -ζ1110-ζ11 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ119-ζ112 | -ζ116-ζ115 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ26 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ1110+3ζ11 | 3ζ119+3ζ112 | 3ζ118+3ζ113 | 3ζ117+3ζ114 | 3ζ116+3ζ115 | -ζ119-ζ112 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ117-ζ114 | -ζ1110-ζ11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ27 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ119+3ζ112 | 3ζ117+3ζ114 | 3ζ116+3ζ115 | 3ζ118+3ζ113 | 3ζ1110+3ζ11 | -ζ117-ζ114 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ118-ζ113 | -ζ119-ζ112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 6 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 3ζ117+3ζ114 | 3ζ118+3ζ113 | 3ζ1110+3ζ11 | 3ζ116+3ζ115 | 3ζ119+3ζ112 | -ζ118-ζ113 | -ζ119-ζ112 | -ζ1110-ζ11 | -ζ116-ζ115 | -ζ117-ζ114 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)
(1 32)(2 33)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)
(12 23 34)(13 24 35)(14 25 36)(15 26 37)(16 27 38)(17 28 39)(18 29 40)(19 30 41)(20 31 42)(21 32 43)(22 33 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)
G:=sub<Sym(44)| (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (12,23,34)(13,24,35)(14,25,36)(15,26,37)(16,27,38)(17,28,39)(18,29,40)(19,30,41)(20,31,42)(21,32,43)(22,33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)>;
G:=Group( (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (12,23,34)(13,24,35)(14,25,36)(15,26,37)(16,27,38)(17,28,39)(18,29,40)(19,30,41)(20,31,42)(21,32,43)(22,33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43) );
G=PermutationGroup([[(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44)], [(1,32),(2,33),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44)], [(12,23,34),(13,24,35),(14,25,36),(15,26,37),(16,27,38),(17,28,39),(18,29,40),(19,30,41),(20,31,42),(21,32,43),(22,33,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43)]])
Matrix representation of A4×D11 ►in GL5(𝔽67)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 66 | 0 | 0 |
0 | 0 | 65 | 66 | 52 |
0 | 0 | 36 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 66 | 65 | 52 |
0 | 0 | 0 | 66 | 0 |
0 | 0 | 0 | 36 | 1 |
37 | 0 | 0 | 0 | 0 |
0 | 37 | 0 | 0 | 0 |
0 | 0 | 66 | 66 | 52 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
24 | 1 | 0 | 0 | 0 |
62 | 11 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
29 | 49 | 0 | 0 | 0 |
2 | 38 | 0 | 0 | 0 |
0 | 0 | 66 | 0 | 0 |
0 | 0 | 0 | 66 | 0 |
0 | 0 | 0 | 0 | 66 |
G:=sub<GL(5,GF(67))| [1,0,0,0,0,0,1,0,0,0,0,0,66,65,36,0,0,0,66,0,0,0,0,52,1],[1,0,0,0,0,0,1,0,0,0,0,0,66,0,0,0,0,65,66,36,0,0,52,0,1],[37,0,0,0,0,0,37,0,0,0,0,0,66,1,0,0,0,66,0,0,0,0,52,0,1],[24,62,0,0,0,1,11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[29,2,0,0,0,49,38,0,0,0,0,0,66,0,0,0,0,0,66,0,0,0,0,0,66] >;
A4×D11 in GAP, Magma, Sage, TeX
A_4\times D_{11}
% in TeX
G:=Group("A4xD11");
// GroupNames label
G:=SmallGroup(264,33);
// by ID
G=gap.SmallGroup(264,33);
# by ID
G:=PCGroup([5,-2,-3,-2,2,-11,142,68,6004]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^11=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations
Export
Subgroup lattice of A4×D11 in TeX
Character table of A4×D11 in TeX