Copied to
clipboard

G = A4×D11order 264 = 23·3·11

Direct product of A4 and D11

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×D11, C11⋊(C2×A4), (C2×C22)⋊C6, (C22×D11)⋊C3, C22⋊(C3×D11), (C11×A4)⋊2C2, SmallGroup(264,33)

Series: Derived Chief Lower central Upper central

C1C2×C22 — A4×D11
C1C11C2×C22C11×A4 — A4×D11
C2×C22 — A4×D11
C1

Generators and relations for A4×D11
 G = < a,b,c,d,e | a2=b2=c3=d11=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

3C2
11C2
33C2
4C3
33C22
33C22
44C6
3C22
3D11
4C33
11C23
3D22
3D22
4C3×D11
11C2×A4

Character table of A4×D11

 class 12A2B2C3A3B6A6B11A11B11C11D11E22A22B22C22D22E33A33B33C33D33E33F33G33H33I33J
 size 13113344444422222666668888888888
ρ11111111111111111111111111111    trivial
ρ211-1-111-1-111111111111111111111    linear of order 2
ρ31111ζ3ζ32ζ32ζ31111111111ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3    linear of order 3
ρ411-1-1ζ32ζ3ζ65ζ61111111111ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32    linear of order 6
ρ51111ζ32ζ3ζ3ζ321111111111ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ32ζ32    linear of order 3
ρ611-1-1ζ3ζ32ζ6ζ651111111111ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ3ζ3    linear of order 6
ρ722002200ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ117114ζ119112ζ111011ζ118113ζ118113ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ119112ζ111011ζ117114    orthogonal lifted from D11
ρ822002200ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ116115ζ118113ζ117114ζ111011ζ111011ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ118113ζ117114ζ116115    orthogonal lifted from D11
ρ922002200ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ111011ζ116115ζ118113ζ119112ζ119112ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ116115ζ118113ζ111011    orthogonal lifted from D11
ρ1022002200ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ119112ζ111011ζ116115ζ117114ζ117114ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ111011ζ116115ζ119112    orthogonal lifted from D11
ρ1122002200ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ118113ζ117114ζ119112ζ116115ζ116115ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ117114ζ119112ζ118113    orthogonal lifted from D11
ρ122200-1--3-1+-300ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ119112ζ111011ζ116115ζ117114ζ32ζ11732ζ114ζ3ζ1173ζ114ζ3ζ1183ζ113ζ3ζ11103ζ11ζ3ζ1163ζ115ζ3ζ1193ζ112ζ32ζ11832ζ113ζ32ζ111032ζ11ζ32ζ11632ζ115ζ32ζ11932ζ112    complex lifted from C3×D11
ρ132200-1+-3-1--300ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ116115ζ118113ζ117114ζ111011ζ3ζ11103ζ11ζ32ζ111032ζ11ζ32ζ11932ζ112ζ32ζ11832ζ113ζ32ζ11732ζ114ζ32ζ11632ζ115ζ3ζ1193ζ112ζ3ζ1183ζ113ζ3ζ1173ζ114ζ3ζ1163ζ115    complex lifted from C3×D11
ρ142200-1+-3-1--300ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ111011ζ116115ζ118113ζ119112ζ3ζ1193ζ112ζ32ζ11932ζ112ζ32ζ11732ζ114ζ32ζ11632ζ115ζ32ζ11832ζ113ζ32ζ111032ζ11ζ3ζ1173ζ114ζ3ζ1163ζ115ζ3ζ1183ζ113ζ3ζ11103ζ11    complex lifted from C3×D11
ρ152200-1+-3-1--300ζ117114ζ118113ζ111011ζ116115ζ119112ζ118113ζ119112ζ111011ζ116115ζ117114ζ3ζ1173ζ114ζ32ζ11732ζ114ζ32ζ11832ζ113ζ32ζ111032ζ11ζ32ζ11632ζ115ζ32ζ11932ζ112ζ3ζ1183ζ113ζ3ζ11103ζ11ζ3ζ1163ζ115ζ3ζ1193ζ112    complex lifted from C3×D11
ρ162200-1+-3-1--300ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ117114ζ119112ζ111011ζ118113ζ3ζ1183ζ113ζ32ζ11832ζ113ζ32ζ11632ζ115ζ32ζ11932ζ112ζ32ζ111032ζ11ζ32ζ11732ζ114ζ3ζ1163ζ115ζ3ζ1193ζ112ζ3ζ11103ζ11ζ3ζ1173ζ114    complex lifted from C3×D11
ρ172200-1--3-1+-300ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ118113ζ117114ζ119112ζ116115ζ32ζ11632ζ115ζ3ζ1163ζ115ζ3ζ11103ζ11ζ3ζ1173ζ114ζ3ζ1193ζ112ζ3ζ1183ζ113ζ32ζ111032ζ11ζ32ζ11732ζ114ζ32ζ11932ζ112ζ32ζ11832ζ113    complex lifted from C3×D11
ρ182200-1--3-1+-300ζ119112ζ117114ζ116115ζ118113ζ111011ζ117114ζ111011ζ116115ζ118113ζ119112ζ32ζ11932ζ112ζ3ζ1193ζ112ζ3ζ1173ζ114ζ3ζ1163ζ115ζ3ζ1183ζ113ζ3ζ11103ζ11ζ32ζ11732ζ114ζ32ζ11632ζ115ζ32ζ11832ζ113ζ32ζ111032ζ11    complex lifted from C3×D11
ρ192200-1--3-1+-300ζ111011ζ119112ζ118113ζ117114ζ116115ζ119112ζ116115ζ118113ζ117114ζ111011ζ32ζ111032ζ11ζ3ζ11103ζ11ζ3ζ1193ζ112ζ3ζ1183ζ113ζ3ζ1173ζ114ζ3ζ1163ζ115ζ32ζ11932ζ112ζ32ζ11832ζ113ζ32ζ11732ζ114ζ32ζ11632ζ115    complex lifted from C3×D11
ρ202200-1+-3-1--300ζ116115ζ111011ζ117114ζ119112ζ118113ζ111011ζ118113ζ117114ζ119112ζ116115ζ3ζ1163ζ115ζ32ζ11632ζ115ζ32ζ111032ζ11ζ32ζ11732ζ114ζ32ζ11932ζ112ζ32ζ11832ζ113ζ3ζ11103ζ11ζ3ζ1173ζ114ζ3ζ1193ζ112ζ3ζ1183ζ113    complex lifted from C3×D11
ρ212200-1--3-1+-300ζ118113ζ116115ζ119112ζ111011ζ117114ζ116115ζ117114ζ119112ζ111011ζ118113ζ32ζ11832ζ113ζ3ζ1183ζ113ζ3ζ1163ζ115ζ3ζ1193ζ112ζ3ζ11103ζ11ζ3ζ1173ζ114ζ32ζ11632ζ115ζ32ζ11932ζ112ζ32ζ111032ζ11ζ32ζ11732ζ114    complex lifted from C3×D11
ρ223-1-31000033333-1-1-1-1-10000000000    orthogonal lifted from C2×A4
ρ233-13-1000033333-1-1-1-1-10000000000    orthogonal lifted from A4
ρ246-2000000118+3ζ113116+3ζ115119+3ζ1121110+3ζ11117+3ζ1141161151171141191121110111181130000000000    orthogonal faithful
ρ256-2000000116+3ζ1151110+3ζ11117+3ζ114119+3ζ112118+3ζ1131110111181131171141191121161150000000000    orthogonal faithful
ρ266-20000001110+3ζ11119+3ζ112118+3ζ113117+3ζ114116+3ζ1151191121161151181131171141110110000000000    orthogonal faithful
ρ276-2000000119+3ζ112117+3ζ114116+3ζ115118+3ζ1131110+3ζ111171141110111161151181131191120000000000    orthogonal faithful
ρ286-2000000117+3ζ114118+3ζ1131110+3ζ11116+3ζ115119+3ζ1121181131191121110111161151171140000000000    orthogonal faithful

Smallest permutation representation of A4×D11
On 44 points
Generators in S44
(1 21)(2 22)(3 12)(4 13)(5 14)(6 15)(7 16)(8 17)(9 18)(10 19)(11 20)(23 34)(24 35)(25 36)(26 37)(27 38)(28 39)(29 40)(30 41)(31 42)(32 43)(33 44)
(1 32)(2 33)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)
(12 23 34)(13 24 35)(14 25 36)(15 26 37)(16 27 38)(17 28 39)(18 29 40)(19 30 41)(20 31 42)(21 32 43)(22 33 44)
(1 2 3 4 5 6 7 8 9 10 11)(12 13 14 15 16 17 18 19 20 21 22)(23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44)
(1 11)(2 10)(3 9)(4 8)(5 7)(12 18)(13 17)(14 16)(19 22)(20 21)(23 29)(24 28)(25 27)(30 33)(31 32)(34 40)(35 39)(36 38)(41 44)(42 43)

G:=sub<Sym(44)| (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (12,23,34)(13,24,35)(14,25,36)(15,26,37)(16,27,38)(17,28,39)(18,29,40)(19,30,41)(20,31,42)(21,32,43)(22,33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43)>;

G:=Group( (1,21)(2,22)(3,12)(4,13)(5,14)(6,15)(7,16)(8,17)(9,18)(10,19)(11,20)(23,34)(24,35)(25,36)(26,37)(27,38)(28,39)(29,40)(30,41)(31,42)(32,43)(33,44), (1,32)(2,33)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44), (12,23,34)(13,24,35)(14,25,36)(15,26,37)(16,27,38)(17,28,39)(18,29,40)(19,30,41)(20,31,42)(21,32,43)(22,33,44), (1,2,3,4,5,6,7,8,9,10,11)(12,13,14,15,16,17,18,19,20,21,22)(23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44), (1,11)(2,10)(3,9)(4,8)(5,7)(12,18)(13,17)(14,16)(19,22)(20,21)(23,29)(24,28)(25,27)(30,33)(31,32)(34,40)(35,39)(36,38)(41,44)(42,43) );

G=PermutationGroup([[(1,21),(2,22),(3,12),(4,13),(5,14),(6,15),(7,16),(8,17),(9,18),(10,19),(11,20),(23,34),(24,35),(25,36),(26,37),(27,38),(28,39),(29,40),(30,41),(31,42),(32,43),(33,44)], [(1,32),(2,33),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44)], [(12,23,34),(13,24,35),(14,25,36),(15,26,37),(16,27,38),(17,28,39),(18,29,40),(19,30,41),(20,31,42),(21,32,43),(22,33,44)], [(1,2,3,4,5,6,7,8,9,10,11),(12,13,14,15,16,17,18,19,20,21,22),(23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44)], [(1,11),(2,10),(3,9),(4,8),(5,7),(12,18),(13,17),(14,16),(19,22),(20,21),(23,29),(24,28),(25,27),(30,33),(31,32),(34,40),(35,39),(36,38),(41,44),(42,43)]])

Matrix representation of A4×D11 in GL5(𝔽67)

10000
01000
006600
00656652
003601
,
10000
01000
00666552
000660
000361
,
370000
037000
00666652
00100
00001
,
241000
6211000
00100
00010
00001
,
2949000
238000
006600
000660
000066

G:=sub<GL(5,GF(67))| [1,0,0,0,0,0,1,0,0,0,0,0,66,65,36,0,0,0,66,0,0,0,0,52,1],[1,0,0,0,0,0,1,0,0,0,0,0,66,0,0,0,0,65,66,36,0,0,52,0,1],[37,0,0,0,0,0,37,0,0,0,0,0,66,1,0,0,0,66,0,0,0,0,52,0,1],[24,62,0,0,0,1,11,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[29,2,0,0,0,49,38,0,0,0,0,0,66,0,0,0,0,0,66,0,0,0,0,0,66] >;

A4×D11 in GAP, Magma, Sage, TeX

A_4\times D_{11}
% in TeX

G:=Group("A4xD11");
// GroupNames label

G:=SmallGroup(264,33);
// by ID

G=gap.SmallGroup(264,33);
# by ID

G:=PCGroup([5,-2,-3,-2,2,-11,142,68,6004]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^11=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of A4×D11 in TeX
Character table of A4×D11 in TeX

׿
×
𝔽