Copied to
clipboard

G = C2×C17⋊D4order 272 = 24·17

Direct product of C2 and C17⋊D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C17⋊D4, C342D4, C23⋊D17, C222D34, D343C22, C34.10C23, Dic172C22, C173(C2×D4), (C2×C34)⋊3C22, (C22×C34)⋊2C2, (C2×Dic17)⋊4C2, (C22×D17)⋊3C2, C2.10(C22×D17), SmallGroup(272,45)

Series: Derived Chief Lower central Upper central

C1C34 — C2×C17⋊D4
C1C17C34D34C22×D17 — C2×C17⋊D4
C17C34 — C2×C17⋊D4
C1C22C23

Generators and relations for C2×C17⋊D4
 G = < a,b,c,d | a2=b17=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 374 in 54 conjugacy classes, 27 normal (11 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, D4, C23, C23, C2×D4, C17, D17, C34, C34, C34, Dic17, D34, D34, C2×C34, C2×C34, C2×C34, C2×Dic17, C17⋊D4, C22×D17, C22×C34, C2×C17⋊D4
Quotients: C1, C2, C22, D4, C23, C2×D4, D17, D34, C17⋊D4, C22×D17, C2×C17⋊D4

Smallest permutation representation of C2×C17⋊D4
On 136 points
Generators in S136
(1 86)(2 87)(3 88)(4 89)(5 90)(6 91)(7 92)(8 93)(9 94)(10 95)(11 96)(12 97)(13 98)(14 99)(15 100)(16 101)(17 102)(18 69)(19 70)(20 71)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 81)(31 82)(32 83)(33 84)(34 85)(35 120)(36 121)(37 122)(38 123)(39 124)(40 125)(41 126)(42 127)(43 128)(44 129)(45 130)(46 131)(47 132)(48 133)(49 134)(50 135)(51 136)(52 103)(53 104)(54 105)(55 106)(56 107)(57 108)(58 109)(59 110)(60 111)(61 112)(62 113)(63 114)(64 115)(65 116)(66 117)(67 118)(68 119)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 35 18 52)(2 51 19 68)(3 50 20 67)(4 49 21 66)(5 48 22 65)(6 47 23 64)(7 46 24 63)(8 45 25 62)(9 44 26 61)(10 43 27 60)(11 42 28 59)(12 41 29 58)(13 40 30 57)(14 39 31 56)(15 38 32 55)(16 37 33 54)(17 36 34 53)(69 103 86 120)(70 119 87 136)(71 118 88 135)(72 117 89 134)(73 116 90 133)(74 115 91 132)(75 114 92 131)(76 113 93 130)(77 112 94 129)(78 111 95 128)(79 110 96 127)(80 109 97 126)(81 108 98 125)(82 107 99 124)(83 106 100 123)(84 105 101 122)(85 104 102 121)
(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)(25 28)(26 27)(35 52)(36 68)(37 67)(38 66)(39 65)(40 64)(41 63)(42 62)(43 61)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)(51 53)(70 85)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(87 102)(88 101)(89 100)(90 99)(91 98)(92 97)(93 96)(94 95)(103 120)(104 136)(105 135)(106 134)(107 133)(108 132)(109 131)(110 130)(111 129)(112 128)(113 127)(114 126)(115 125)(116 124)(117 123)(118 122)(119 121)

G:=sub<Sym(136)| (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,85)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,103)(53,104)(54,105)(55,106)(56,107)(57,108)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,35,18,52)(2,51,19,68)(3,50,20,67)(4,49,21,66)(5,48,22,65)(6,47,23,64)(7,46,24,63)(8,45,25,62)(9,44,26,61)(10,43,27,60)(11,42,28,59)(12,41,29,58)(13,40,30,57)(14,39,31,56)(15,38,32,55)(16,37,33,54)(17,36,34,53)(69,103,86,120)(70,119,87,136)(71,118,88,135)(72,117,89,134)(73,116,90,133)(74,115,91,132)(75,114,92,131)(76,113,93,130)(77,112,94,129)(78,111,95,128)(79,110,96,127)(80,109,97,126)(81,108,98,125)(82,107,99,124)(83,106,100,123)(84,105,101,122)(85,104,102,121), (2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(35,52)(36,68)(37,67)(38,66)(39,65)(40,64)(41,63)(42,62)(43,61)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(87,102)(88,101)(89,100)(90,99)(91,98)(92,97)(93,96)(94,95)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121)>;

G:=Group( (1,86)(2,87)(3,88)(4,89)(5,90)(6,91)(7,92)(8,93)(9,94)(10,95)(11,96)(12,97)(13,98)(14,99)(15,100)(16,101)(17,102)(18,69)(19,70)(20,71)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,81)(31,82)(32,83)(33,84)(34,85)(35,120)(36,121)(37,122)(38,123)(39,124)(40,125)(41,126)(42,127)(43,128)(44,129)(45,130)(46,131)(47,132)(48,133)(49,134)(50,135)(51,136)(52,103)(53,104)(54,105)(55,106)(56,107)(57,108)(58,109)(59,110)(60,111)(61,112)(62,113)(63,114)(64,115)(65,116)(66,117)(67,118)(68,119), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,35,18,52)(2,51,19,68)(3,50,20,67)(4,49,21,66)(5,48,22,65)(6,47,23,64)(7,46,24,63)(8,45,25,62)(9,44,26,61)(10,43,27,60)(11,42,28,59)(12,41,29,58)(13,40,30,57)(14,39,31,56)(15,38,32,55)(16,37,33,54)(17,36,34,53)(69,103,86,120)(70,119,87,136)(71,118,88,135)(72,117,89,134)(73,116,90,133)(74,115,91,132)(75,114,92,131)(76,113,93,130)(77,112,94,129)(78,111,95,128)(79,110,96,127)(80,109,97,126)(81,108,98,125)(82,107,99,124)(83,106,100,123)(84,105,101,122)(85,104,102,121), (2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)(25,28)(26,27)(35,52)(36,68)(37,67)(38,66)(39,65)(40,64)(41,63)(42,62)(43,61)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54)(51,53)(70,85)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(87,102)(88,101)(89,100)(90,99)(91,98)(92,97)(93,96)(94,95)(103,120)(104,136)(105,135)(106,134)(107,133)(108,132)(109,131)(110,130)(111,129)(112,128)(113,127)(114,126)(115,125)(116,124)(117,123)(118,122)(119,121) );

G=PermutationGroup([[(1,86),(2,87),(3,88),(4,89),(5,90),(6,91),(7,92),(8,93),(9,94),(10,95),(11,96),(12,97),(13,98),(14,99),(15,100),(16,101),(17,102),(18,69),(19,70),(20,71),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,81),(31,82),(32,83),(33,84),(34,85),(35,120),(36,121),(37,122),(38,123),(39,124),(40,125),(41,126),(42,127),(43,128),(44,129),(45,130),(46,131),(47,132),(48,133),(49,134),(50,135),(51,136),(52,103),(53,104),(54,105),(55,106),(56,107),(57,108),(58,109),(59,110),(60,111),(61,112),(62,113),(63,114),(64,115),(65,116),(66,117),(67,118),(68,119)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,35,18,52),(2,51,19,68),(3,50,20,67),(4,49,21,66),(5,48,22,65),(6,47,23,64),(7,46,24,63),(8,45,25,62),(9,44,26,61),(10,43,27,60),(11,42,28,59),(12,41,29,58),(13,40,30,57),(14,39,31,56),(15,38,32,55),(16,37,33,54),(17,36,34,53),(69,103,86,120),(70,119,87,136),(71,118,88,135),(72,117,89,134),(73,116,90,133),(74,115,91,132),(75,114,92,131),(76,113,93,130),(77,112,94,129),(78,111,95,128),(79,110,96,127),(80,109,97,126),(81,108,98,125),(82,107,99,124),(83,106,100,123),(84,105,101,122),(85,104,102,121)], [(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29),(25,28),(26,27),(35,52),(36,68),(37,67),(38,66),(39,65),(40,64),(41,63),(42,62),(43,61),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54),(51,53),(70,85),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(87,102),(88,101),(89,100),(90,99),(91,98),(92,97),(93,96),(94,95),(103,120),(104,136),(105,135),(106,134),(107,133),(108,132),(109,131),(110,130),(111,129),(112,128),(113,127),(114,126),(115,125),(116,124),(117,123),(118,122),(119,121)]])

74 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B17A···17H34A···34BD
order122222224417···1734···34
size111122343434342···22···2

74 irreducible representations

dim111112222
type++++++++
imageC1C2C2C2C2D4D17D34C17⋊D4
kernelC2×C17⋊D4C2×Dic17C17⋊D4C22×D17C22×C34C34C23C22C2
# reps11411282432

Matrix representation of C2×C17⋊D4 in GL3(𝔽137) generated by

13600
010
001
,
100
0131136
010
,
13600
01195
029126
,
13600
010
0131136
G:=sub<GL(3,GF(137))| [136,0,0,0,1,0,0,0,1],[1,0,0,0,131,1,0,136,0],[136,0,0,0,11,29,0,95,126],[136,0,0,0,1,131,0,0,136] >;

C2×C17⋊D4 in GAP, Magma, Sage, TeX

C_2\times C_{17}\rtimes D_4
% in TeX

G:=Group("C2xC17:D4");
// GroupNames label

G:=SmallGroup(272,45);
// by ID

G=gap.SmallGroup(272,45);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,182,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^17=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽