Extensions 1→N→G→Q→1 with N=C34 and Q=D4

Direct product G=N×Q with N=C34 and Q=D4
dρLabelID
D4×C34136D4xC34272,47

Semidirect products G=N:Q with N=C34 and Q=D4
extensionφ:Q→Aut NdρLabelID
C341D4 = C2×D68φ: D4/C4C2 ⊆ Aut C34136C34:1D4272,38
C342D4 = C2×C17⋊D4φ: D4/C22C2 ⊆ Aut C34136C34:2D4272,45

Non-split extensions G=N.Q with N=C34 and Q=D4
extensionφ:Q→Aut NdρLabelID
C34.1D4 = C136⋊C2φ: D4/C4C2 ⊆ Aut C341362C34.1D4272,6
C34.2D4 = D136φ: D4/C4C2 ⊆ Aut C341362+C34.2D4272,7
C34.3D4 = Dic68φ: D4/C4C2 ⊆ Aut C342722-C34.3D4272,8
C34.4D4 = C683C4φ: D4/C4C2 ⊆ Aut C34272C34.4D4272,13
C34.5D4 = C34.D4φ: D4/C22C2 ⊆ Aut C34272C34.5D4272,12
C34.6D4 = D34⋊C4φ: D4/C22C2 ⊆ Aut C34136C34.6D4272,14
C34.7D4 = D4⋊D17φ: D4/C22C2 ⊆ Aut C341364+C34.7D4272,15
C34.8D4 = D4.D17φ: D4/C22C2 ⊆ Aut C341364-C34.8D4272,16
C34.9D4 = Q8⋊D17φ: D4/C22C2 ⊆ Aut C341364+C34.9D4272,17
C34.10D4 = C17⋊Q16φ: D4/C22C2 ⊆ Aut C342724-C34.10D4272,18
C34.11D4 = C23.D17φ: D4/C22C2 ⊆ Aut C34136C34.11D4272,19
C34.12D4 = C22⋊C4×C17central extension (φ=1)136C34.12D4272,21
C34.13D4 = C4⋊C4×C17central extension (φ=1)272C34.13D4272,22
C34.14D4 = D8×C17central extension (φ=1)1362C34.14D4272,25
C34.15D4 = SD16×C17central extension (φ=1)1362C34.15D4272,26
C34.16D4 = Q16×C17central extension (φ=1)2722C34.16D4272,27

׿
×
𝔽