Copied to
clipboard

G = C35⋊D4order 280 = 23·5·7

1st semidirect product of C35 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C351D4, D101D7, D141D5, C10.4D14, C14.4D10, Dic354C2, C70.4C22, C52(C7⋊D4), C72(C5⋊D4), C2.4(D5×D7), (D5×C14)⋊1C2, (C10×D7)⋊1C2, SmallGroup(280,10)

Series: Derived Chief Lower central Upper central

C1C70 — C35⋊D4
C1C7C35C70C10×D7 — C35⋊D4
C35C70 — C35⋊D4
C1C2

Generators and relations for C35⋊D4
 G = < a,b,c | a35=b4=c2=1, bab-1=a-1, cac=a6, cbc=b-1 >

10C2
14C2
5C22
7C22
35C4
2D5
14C10
2D7
10C14
35D4
7C2×C10
7Dic5
5Dic7
5C2×C14
2C7×D5
2C5×D7
7C5⋊D4
5C7⋊D4

Smallest permutation representation of C35⋊D4
On 140 points
Generators in S140
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35)(36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 98 56 123)(2 97 57 122)(3 96 58 121)(4 95 59 120)(5 94 60 119)(6 93 61 118)(7 92 62 117)(8 91 63 116)(9 90 64 115)(10 89 65 114)(11 88 66 113)(12 87 67 112)(13 86 68 111)(14 85 69 110)(15 84 70 109)(16 83 36 108)(17 82 37 107)(18 81 38 106)(19 80 39 140)(20 79 40 139)(21 78 41 138)(22 77 42 137)(23 76 43 136)(24 75 44 135)(25 74 45 134)(26 73 46 133)(27 72 47 132)(28 71 48 131)(29 105 49 130)(30 104 50 129)(31 103 51 128)(32 102 52 127)(33 101 53 126)(34 100 54 125)(35 99 55 124)
(2 7)(3 13)(4 19)(5 25)(6 31)(9 14)(10 20)(11 26)(12 32)(16 21)(17 27)(18 33)(23 28)(24 34)(30 35)(36 41)(37 47)(38 53)(39 59)(40 65)(43 48)(44 54)(45 60)(46 66)(50 55)(51 61)(52 67)(57 62)(58 68)(64 69)(71 136)(72 107)(73 113)(74 119)(75 125)(76 131)(77 137)(78 108)(79 114)(80 120)(81 126)(82 132)(83 138)(84 109)(85 115)(86 121)(87 127)(88 133)(89 139)(90 110)(91 116)(92 122)(93 128)(94 134)(95 140)(96 111)(97 117)(98 123)(99 129)(100 135)(101 106)(102 112)(103 118)(104 124)(105 130)

G:=sub<Sym(140)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,98,56,123)(2,97,57,122)(3,96,58,121)(4,95,59,120)(5,94,60,119)(6,93,61,118)(7,92,62,117)(8,91,63,116)(9,90,64,115)(10,89,65,114)(11,88,66,113)(12,87,67,112)(13,86,68,111)(14,85,69,110)(15,84,70,109)(16,83,36,108)(17,82,37,107)(18,81,38,106)(19,80,39,140)(20,79,40,139)(21,78,41,138)(22,77,42,137)(23,76,43,136)(24,75,44,135)(25,74,45,134)(26,73,46,133)(27,72,47,132)(28,71,48,131)(29,105,49,130)(30,104,50,129)(31,103,51,128)(32,102,52,127)(33,101,53,126)(34,100,54,125)(35,99,55,124), (2,7)(3,13)(4,19)(5,25)(6,31)(9,14)(10,20)(11,26)(12,32)(16,21)(17,27)(18,33)(23,28)(24,34)(30,35)(36,41)(37,47)(38,53)(39,59)(40,65)(43,48)(44,54)(45,60)(46,66)(50,55)(51,61)(52,67)(57,62)(58,68)(64,69)(71,136)(72,107)(73,113)(74,119)(75,125)(76,131)(77,137)(78,108)(79,114)(80,120)(81,126)(82,132)(83,138)(84,109)(85,115)(86,121)(87,127)(88,133)(89,139)(90,110)(91,116)(92,122)(93,128)(94,134)(95,140)(96,111)(97,117)(98,123)(99,129)(100,135)(101,106)(102,112)(103,118)(104,124)(105,130)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35)(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,98,56,123)(2,97,57,122)(3,96,58,121)(4,95,59,120)(5,94,60,119)(6,93,61,118)(7,92,62,117)(8,91,63,116)(9,90,64,115)(10,89,65,114)(11,88,66,113)(12,87,67,112)(13,86,68,111)(14,85,69,110)(15,84,70,109)(16,83,36,108)(17,82,37,107)(18,81,38,106)(19,80,39,140)(20,79,40,139)(21,78,41,138)(22,77,42,137)(23,76,43,136)(24,75,44,135)(25,74,45,134)(26,73,46,133)(27,72,47,132)(28,71,48,131)(29,105,49,130)(30,104,50,129)(31,103,51,128)(32,102,52,127)(33,101,53,126)(34,100,54,125)(35,99,55,124), (2,7)(3,13)(4,19)(5,25)(6,31)(9,14)(10,20)(11,26)(12,32)(16,21)(17,27)(18,33)(23,28)(24,34)(30,35)(36,41)(37,47)(38,53)(39,59)(40,65)(43,48)(44,54)(45,60)(46,66)(50,55)(51,61)(52,67)(57,62)(58,68)(64,69)(71,136)(72,107)(73,113)(74,119)(75,125)(76,131)(77,137)(78,108)(79,114)(80,120)(81,126)(82,132)(83,138)(84,109)(85,115)(86,121)(87,127)(88,133)(89,139)(90,110)(91,116)(92,122)(93,128)(94,134)(95,140)(96,111)(97,117)(98,123)(99,129)(100,135)(101,106)(102,112)(103,118)(104,124)(105,130) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35),(36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,98,56,123),(2,97,57,122),(3,96,58,121),(4,95,59,120),(5,94,60,119),(6,93,61,118),(7,92,62,117),(8,91,63,116),(9,90,64,115),(10,89,65,114),(11,88,66,113),(12,87,67,112),(13,86,68,111),(14,85,69,110),(15,84,70,109),(16,83,36,108),(17,82,37,107),(18,81,38,106),(19,80,39,140),(20,79,40,139),(21,78,41,138),(22,77,42,137),(23,76,43,136),(24,75,44,135),(25,74,45,134),(26,73,46,133),(27,72,47,132),(28,71,48,131),(29,105,49,130),(30,104,50,129),(31,103,51,128),(32,102,52,127),(33,101,53,126),(34,100,54,125),(35,99,55,124)], [(2,7),(3,13),(4,19),(5,25),(6,31),(9,14),(10,20),(11,26),(12,32),(16,21),(17,27),(18,33),(23,28),(24,34),(30,35),(36,41),(37,47),(38,53),(39,59),(40,65),(43,48),(44,54),(45,60),(46,66),(50,55),(51,61),(52,67),(57,62),(58,68),(64,69),(71,136),(72,107),(73,113),(74,119),(75,125),(76,131),(77,137),(78,108),(79,114),(80,120),(81,126),(82,132),(83,138),(84,109),(85,115),(86,121),(87,127),(88,133),(89,139),(90,110),(91,116),(92,122),(93,128),(94,134),(95,140),(96,111),(97,117),(98,123),(99,129),(100,135),(101,106),(102,112),(103,118),(104,124),(105,130)]])

37 conjugacy classes

class 1 2A2B2C 4 5A5B7A7B7C10A10B10C10D10E10F14A14B14C14D···14I35A···35F70A···70F
order122245577710101010101014141414···1435···3570···70
size1110147022222221414141422210···104···44···4

37 irreducible representations

dim1111222222244
type++++++++++-
imageC1C2C2C2D4D5D7D10D14C5⋊D4C7⋊D4D5×D7C35⋊D4
kernelC35⋊D4Dic35C10×D7D5×C14C35D14D10C14C10C7C5C2C1
# reps1111123234666

Matrix representation of C35⋊D4 in GL4(𝔽281) generated by

232000
08600
0047275
00470
,
028000
1000
00525
00235276
,
1000
028000
00401
0087241
G:=sub<GL(4,GF(281))| [232,0,0,0,0,86,0,0,0,0,47,47,0,0,275,0],[0,1,0,0,280,0,0,0,0,0,5,235,0,0,25,276],[1,0,0,0,0,280,0,0,0,0,40,87,0,0,1,241] >;

C35⋊D4 in GAP, Magma, Sage, TeX

C_{35}\rtimes D_4
% in TeX

G:=Group("C35:D4");
// GroupNames label

G:=SmallGroup(280,10);
// by ID

G=gap.SmallGroup(280,10);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,61,328,6004]);
// Polycyclic

G:=Group<a,b,c|a^35=b^4=c^2=1,b*a*b^-1=a^-1,c*a*c=a^6,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C35⋊D4 in TeX

׿
×
𝔽