direct product, metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C5×D28, C35⋊5D4, C20⋊3D7, C28⋊1C10, C140⋊3C2, D14⋊1C10, C10.15D14, C70.15C22, C4⋊(C5×D7), C7⋊1(C5×D4), (C10×D7)⋊4C2, C2.4(C10×D7), C14.3(C2×C10), SmallGroup(280,16)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×D28
G = < a,b,c | a5=b28=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 106 44 78 119)(2 107 45 79 120)(3 108 46 80 121)(4 109 47 81 122)(5 110 48 82 123)(6 111 49 83 124)(7 112 50 84 125)(8 85 51 57 126)(9 86 52 58 127)(10 87 53 59 128)(11 88 54 60 129)(12 89 55 61 130)(13 90 56 62 131)(14 91 29 63 132)(15 92 30 64 133)(16 93 31 65 134)(17 94 32 66 135)(18 95 33 67 136)(19 96 34 68 137)(20 97 35 69 138)(21 98 36 70 139)(22 99 37 71 140)(23 100 38 72 113)(24 101 39 73 114)(25 102 40 74 115)(26 103 41 75 116)(27 104 42 76 117)(28 105 43 77 118)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)(29 30)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)(113 124)(114 123)(115 122)(116 121)(117 120)(118 119)(125 140)(126 139)(127 138)(128 137)(129 136)(130 135)(131 134)(132 133)
G:=sub<Sym(140)| (1,106,44,78,119)(2,107,45,79,120)(3,108,46,80,121)(4,109,47,81,122)(5,110,48,82,123)(6,111,49,83,124)(7,112,50,84,125)(8,85,51,57,126)(9,86,52,58,127)(10,87,53,59,128)(11,88,54,60,129)(12,89,55,61,130)(13,90,56,62,131)(14,91,29,63,132)(15,92,30,64,133)(16,93,31,65,134)(17,94,32,66,135)(18,95,33,67,136)(19,96,34,68,137)(20,97,35,69,138)(21,98,36,70,139)(22,99,37,71,140)(23,100,38,72,113)(24,101,39,73,114)(25,102,40,74,115)(26,103,41,75,116)(27,104,42,76,117)(28,105,43,77,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(113,124)(114,123)(115,122)(116,121)(117,120)(118,119)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)(131,134)(132,133)>;
G:=Group( (1,106,44,78,119)(2,107,45,79,120)(3,108,46,80,121)(4,109,47,81,122)(5,110,48,82,123)(6,111,49,83,124)(7,112,50,84,125)(8,85,51,57,126)(9,86,52,58,127)(10,87,53,59,128)(11,88,54,60,129)(12,89,55,61,130)(13,90,56,62,131)(14,91,29,63,132)(15,92,30,64,133)(16,93,31,65,134)(17,94,32,66,135)(18,95,33,67,136)(19,96,34,68,137)(20,97,35,69,138)(21,98,36,70,139)(22,99,37,71,140)(23,100,38,72,113)(24,101,39,73,114)(25,102,40,74,115)(26,103,41,75,116)(27,104,42,76,117)(28,105,43,77,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(113,124)(114,123)(115,122)(116,121)(117,120)(118,119)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)(131,134)(132,133) );
G=PermutationGroup([[(1,106,44,78,119),(2,107,45,79,120),(3,108,46,80,121),(4,109,47,81,122),(5,110,48,82,123),(6,111,49,83,124),(7,112,50,84,125),(8,85,51,57,126),(9,86,52,58,127),(10,87,53,59,128),(11,88,54,60,129),(12,89,55,61,130),(13,90,56,62,131),(14,91,29,63,132),(15,92,30,64,133),(16,93,31,65,134),(17,94,32,66,135),(18,95,33,67,136),(19,96,34,68,137),(20,97,35,69,138),(21,98,36,70,139),(22,99,37,71,140),(23,100,38,72,113),(24,101,39,73,114),(25,102,40,74,115),(26,103,41,75,116),(27,104,42,76,117),(28,105,43,77,118)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15),(29,30),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106),(113,124),(114,123),(115,122),(116,121),(117,120),(118,119),(125,140),(126,139),(127,138),(128,137),(129,136),(130,135),(131,134),(132,133)]])
85 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 5A | 5B | 5C | 5D | 7A | 7B | 7C | 10A | 10B | 10C | 10D | 10E | ··· | 10L | 14A | 14B | 14C | 20A | 20B | 20C | 20D | 28A | ··· | 28F | 35A | ··· | 35L | 70A | ··· | 70L | 140A | ··· | 140X |
order | 1 | 2 | 2 | 2 | 4 | 5 | 5 | 5 | 5 | 7 | 7 | 7 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 14 | 14 | 14 | 20 | 20 | 20 | 20 | 28 | ··· | 28 | 35 | ··· | 35 | 70 | ··· | 70 | 140 | ··· | 140 |
size | 1 | 1 | 14 | 14 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
85 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C5 | C10 | C10 | D4 | D7 | D14 | C5×D4 | D28 | C5×D7 | C10×D7 | C5×D28 |
kernel | C5×D28 | C140 | C10×D7 | D28 | C28 | D14 | C35 | C20 | C10 | C7 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 8 | 1 | 3 | 3 | 4 | 6 | 12 | 12 | 24 |
Matrix representation of C5×D28 ►in GL3(𝔽281) generated by
90 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
280 | 0 | 0 |
0 | 268 | 107 |
0 | 174 | 16 |
1 | 0 | 0 |
0 | 13 | 156 |
0 | 107 | 268 |
G:=sub<GL(3,GF(281))| [90,0,0,0,1,0,0,0,1],[280,0,0,0,268,174,0,107,16],[1,0,0,0,13,107,0,156,268] >;
C5×D28 in GAP, Magma, Sage, TeX
C_5\times D_{28}
% in TeX
G:=Group("C5xD28");
// GroupNames label
G:=SmallGroup(280,16);
// by ID
G=gap.SmallGroup(280,16);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-7,221,106,6004]);
// Polycyclic
G:=Group<a,b,c|a^5=b^28=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export