Copied to
clipboard

G = C5×D28order 280 = 23·5·7

Direct product of C5 and D28

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C5×D28, C355D4, C203D7, C281C10, C1403C2, D141C10, C10.15D14, C70.15C22, C4⋊(C5×D7), C71(C5×D4), (C10×D7)⋊4C2, C2.4(C10×D7), C14.3(C2×C10), SmallGroup(280,16)

Series: Derived Chief Lower central Upper central

C1C14 — C5×D28
C1C7C14C70C10×D7 — C5×D28
C7C14 — C5×D28
C1C10C20

Generators and relations for C5×D28
 G = < a,b,c | a5=b28=c2=1, ab=ba, ac=ca, cbc=b-1 >

14C2
14C2
7C22
7C22
14C10
14C10
2D7
2D7
7D4
7C2×C10
7C2×C10
2C5×D7
2C5×D7
7C5×D4

Smallest permutation representation of C5×D28
On 140 points
Generators in S140
(1 106 44 78 119)(2 107 45 79 120)(3 108 46 80 121)(4 109 47 81 122)(5 110 48 82 123)(6 111 49 83 124)(7 112 50 84 125)(8 85 51 57 126)(9 86 52 58 127)(10 87 53 59 128)(11 88 54 60 129)(12 89 55 61 130)(13 90 56 62 131)(14 91 29 63 132)(15 92 30 64 133)(16 93 31 65 134)(17 94 32 66 135)(18 95 33 67 136)(19 96 34 68 137)(20 97 35 69 138)(21 98 36 70 139)(22 99 37 71 140)(23 100 38 72 113)(24 101 39 73 114)(25 102 40 74 115)(26 103 41 75 116)(27 104 42 76 117)(28 105 43 77 118)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 28)(2 27)(3 26)(4 25)(5 24)(6 23)(7 22)(8 21)(9 20)(10 19)(11 18)(12 17)(13 16)(14 15)(29 30)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)(39 48)(40 47)(41 46)(42 45)(43 44)(57 70)(58 69)(59 68)(60 67)(61 66)(62 65)(63 64)(71 84)(72 83)(73 82)(74 81)(75 80)(76 79)(77 78)(85 98)(86 97)(87 96)(88 95)(89 94)(90 93)(91 92)(99 112)(100 111)(101 110)(102 109)(103 108)(104 107)(105 106)(113 124)(114 123)(115 122)(116 121)(117 120)(118 119)(125 140)(126 139)(127 138)(128 137)(129 136)(130 135)(131 134)(132 133)

G:=sub<Sym(140)| (1,106,44,78,119)(2,107,45,79,120)(3,108,46,80,121)(4,109,47,81,122)(5,110,48,82,123)(6,111,49,83,124)(7,112,50,84,125)(8,85,51,57,126)(9,86,52,58,127)(10,87,53,59,128)(11,88,54,60,129)(12,89,55,61,130)(13,90,56,62,131)(14,91,29,63,132)(15,92,30,64,133)(16,93,31,65,134)(17,94,32,66,135)(18,95,33,67,136)(19,96,34,68,137)(20,97,35,69,138)(21,98,36,70,139)(22,99,37,71,140)(23,100,38,72,113)(24,101,39,73,114)(25,102,40,74,115)(26,103,41,75,116)(27,104,42,76,117)(28,105,43,77,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(113,124)(114,123)(115,122)(116,121)(117,120)(118,119)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)(131,134)(132,133)>;

G:=Group( (1,106,44,78,119)(2,107,45,79,120)(3,108,46,80,121)(4,109,47,81,122)(5,110,48,82,123)(6,111,49,83,124)(7,112,50,84,125)(8,85,51,57,126)(9,86,52,58,127)(10,87,53,59,128)(11,88,54,60,129)(12,89,55,61,130)(13,90,56,62,131)(14,91,29,63,132)(15,92,30,64,133)(16,93,31,65,134)(17,94,32,66,135)(18,95,33,67,136)(19,96,34,68,137)(20,97,35,69,138)(21,98,36,70,139)(22,99,37,71,140)(23,100,38,72,113)(24,101,39,73,114)(25,102,40,74,115)(26,103,41,75,116)(27,104,42,76,117)(28,105,43,77,118), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,28)(2,27)(3,26)(4,25)(5,24)(6,23)(7,22)(8,21)(9,20)(10,19)(11,18)(12,17)(13,16)(14,15)(29,30)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)(39,48)(40,47)(41,46)(42,45)(43,44)(57,70)(58,69)(59,68)(60,67)(61,66)(62,65)(63,64)(71,84)(72,83)(73,82)(74,81)(75,80)(76,79)(77,78)(85,98)(86,97)(87,96)(88,95)(89,94)(90,93)(91,92)(99,112)(100,111)(101,110)(102,109)(103,108)(104,107)(105,106)(113,124)(114,123)(115,122)(116,121)(117,120)(118,119)(125,140)(126,139)(127,138)(128,137)(129,136)(130,135)(131,134)(132,133) );

G=PermutationGroup([[(1,106,44,78,119),(2,107,45,79,120),(3,108,46,80,121),(4,109,47,81,122),(5,110,48,82,123),(6,111,49,83,124),(7,112,50,84,125),(8,85,51,57,126),(9,86,52,58,127),(10,87,53,59,128),(11,88,54,60,129),(12,89,55,61,130),(13,90,56,62,131),(14,91,29,63,132),(15,92,30,64,133),(16,93,31,65,134),(17,94,32,66,135),(18,95,33,67,136),(19,96,34,68,137),(20,97,35,69,138),(21,98,36,70,139),(22,99,37,71,140),(23,100,38,72,113),(24,101,39,73,114),(25,102,40,74,115),(26,103,41,75,116),(27,104,42,76,117),(28,105,43,77,118)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,28),(2,27),(3,26),(4,25),(5,24),(6,23),(7,22),(8,21),(9,20),(10,19),(11,18),(12,17),(13,16),(14,15),(29,30),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49),(39,48),(40,47),(41,46),(42,45),(43,44),(57,70),(58,69),(59,68),(60,67),(61,66),(62,65),(63,64),(71,84),(72,83),(73,82),(74,81),(75,80),(76,79),(77,78),(85,98),(86,97),(87,96),(88,95),(89,94),(90,93),(91,92),(99,112),(100,111),(101,110),(102,109),(103,108),(104,107),(105,106),(113,124),(114,123),(115,122),(116,121),(117,120),(118,119),(125,140),(126,139),(127,138),(128,137),(129,136),(130,135),(131,134),(132,133)]])

85 conjugacy classes

class 1 2A2B2C 4 5A5B5C5D7A7B7C10A10B10C10D10E···10L14A14B14C20A20B20C20D28A···28F35A···35L70A···70L140A···140X
order1222455557771010101010···101414142020202028···2835···3570···70140···140
size11141421111222111114···1422222222···22···22···22···2

85 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C5C10C10D4D7D14C5×D4D28C5×D7C10×D7C5×D28
kernelC5×D28C140C10×D7D28C28D14C35C20C10C7C5C4C2C1
# reps11244813346121224

Matrix representation of C5×D28 in GL3(𝔽281) generated by

9000
010
001
,
28000
0268107
017416
,
100
013156
0107268
G:=sub<GL(3,GF(281))| [90,0,0,0,1,0,0,0,1],[280,0,0,0,268,174,0,107,16],[1,0,0,0,13,107,0,156,268] >;

C5×D28 in GAP, Magma, Sage, TeX

C_5\times D_{28}
% in TeX

G:=Group("C5xD28");
// GroupNames label

G:=SmallGroup(280,16);
// by ID

G=gap.SmallGroup(280,16);
# by ID

G:=PCGroup([5,-2,-2,-5,-2,-7,221,106,6004]);
// Polycyclic

G:=Group<a,b,c|a^5=b^28=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C5×D28 in TeX

׿
×
𝔽