Copied to
clipboard

G = C652C4order 260 = 22·5·13

2nd semidirect product of C65 and C4 acting faithfully

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C652C4, C132F5, D65.2C2, C52(C13⋊C4), SmallGroup(260,10)

Series: Derived Chief Lower central Upper central

C1C65 — C652C4
C1C13C65D65 — C652C4
C65 — C652C4
C1

Generators and relations for C652C4
 G = < a,b | a65=b4=1, bab-1=a57 >

65C2
65C4
13D5
5D13
13F5
5C13⋊C4

Character table of C652C4

 class 124A4B513A13B13C65A65B65C65D65E65F65G65H65I65J65K65L
 size 16565654444444444444444
ρ111111111111111111111    trivial
ρ211-1-11111111111111111    linear of order 2
ρ31-1i-i1111111111111111    linear of order 4
ρ41-1-ii1111111111111111    linear of order 4
ρ54000-1444-1-1-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from F5
ρ640004ζ131213813513ζ139137136134ζ13111310133132ζ131213813513ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ131213813513ζ139137136134ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ139137136134    orthogonal lifted from C13⋊C4
ρ740004ζ139137136134ζ13111310133132ζ131213813513ζ139137136134ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ139137136134ζ13111310133132ζ13111310133132ζ131213813513ζ131213813513ζ13111310133132ζ13111310133132    orthogonal lifted from C13⋊C4
ρ840004ζ13111310133132ζ131213813513ζ139137136134ζ13111310133132ζ139137136134ζ13111310133132ζ13111310133132ζ139137136134ζ13111310133132ζ131213813513ζ131213813513ζ139137136134ζ139137136134ζ131213813513ζ131213813513    orthogonal lifted from C13⋊C4
ρ94000-1ζ139137136134ζ13111310133132ζ131213813513ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613753ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ13413654ζ13854ζ1353ζ13853ζ1355ζ13125ζ13813854ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ13213253ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213354ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310    orthogonal faithful
ρ104000-1ζ139137136134ζ13111310133132ζ131213813513ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613754ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ13413453ζ13353ζ13252ζ131152ζ1335ζ13105ζ13313354ζ131054ζ13252ζ131052ζ1335ζ13115ζ1310131054ζ13854ζ1353ζ13853ζ1355ζ13125ζ13813853ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133    orthogonal faithful
ρ114000-1ζ139137136134ζ13111310133132ζ131213813513ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ131354ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ13213253ζ131253ζ13852ζ131252ζ1355ζ13125ζ13131254ζ13854ζ1353ζ13853ζ1355ζ13125ζ13813854ζ131054ζ13252ζ131052ζ1335ζ13115ζ1310131053ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133    orthogonal faithful
ρ124000-1ζ131213813513ζ139137136134ζ13111310133132ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ131353ζ13353ζ13252ζ131152ζ1335ζ13105ζ13313354ζ13854ζ1353ζ13853ζ1355ζ13125ζ13813853ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ131354ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ13413454ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137    orthogonal faithful
ρ134000-1ζ131213813513ζ139137136134ζ1311131013313254ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ131354ζ131054ζ13252ζ131052ζ1335ζ13115ζ1310131053ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ13413654ζ13754ζ13653ζ13753ζ13452ζ13952ζ13713753ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134    orthogonal faithful
ρ144000-1ζ139137136134ζ13111310133132ζ13121381351354ζ13754ζ13653ζ13753ζ13452ζ13952ζ13713754ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ13413453ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613754ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ131353ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132    orthogonal faithful
ρ154000-1ζ13111310133132ζ131213813513ζ139137136134ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213353ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ13413654ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ131354ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613754ζ13754ζ13653ζ13753ζ13452ζ13952ζ13713753ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313    orthogonal faithful
ρ164000-1ζ131213813513ζ139137136134ζ13111310133132ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213353ζ131253ζ13852ζ131252ζ1355ζ13125ζ13131254ζ13854ζ1353ζ13853ζ1355ζ13125ζ13813853ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ13213254ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ13413454ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137    orthogonal faithful
ρ174000-1ζ13111310133132ζ131213813513ζ13913713613454ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ13413653ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ132133ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ131353ζ131253ζ13852ζ131252ζ1355ζ13125ζ13131254ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613754ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313    orthogonal faithful
ρ184000-1ζ131213813513ζ139137136134ζ1311131013313253ζ131253ζ13852ζ131252ζ1355ζ13125ζ13131254ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ13213254ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213353ζ13353ζ13252ζ131152ζ1335ζ13105ζ13313354ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136    orthogonal faithful
ρ194000-1ζ13111310133132ζ131213813513ζ13913713613453ζ13353ζ13252ζ131152ζ1335ζ13105ζ133133ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ136137ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ13213254ζ131054ζ13252ζ131052ζ1335ζ13115ζ1310131054ζ13754ζ13653ζ13753ζ13452ζ13952ζ137137ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213354ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ1313ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ131353ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312    orthogonal faithful
ρ204000-1ζ13111310133132ζ131213813513ζ139137136134ζ54ζ131054ζ13353ζ131153ζ13352ζ13352ζ13213354ζ13754ζ13653ζ13753ζ13452ζ13952ζ13713754ζ131054ζ13252ζ131052ζ1335ζ13115ζ13101310ζ54ζ131154ζ13253ζ13353ζ13252ζ131052ζ132132ζ53ζ13953ζ13752ζ13752ζ1345ζ1375ζ13613753ζ13353ζ13252ζ131152ζ1335ζ13105ζ13313353ζ131253ζ13852ζ131252ζ1355ζ13125ζ131312ζ54ζ13854ζ1352ζ131252ζ135ζ1355ζ1313ζ53ζ13753ζ13452ζ13652ζ1345ζ1395ζ134134ζ54ζ13954ζ13652ζ13752ζ1365ζ1365ζ134136ζ54ζ13554ζ1353ζ131253ζ135ζ1385ζ131354ζ13854ζ1353ζ13853ζ1355ζ13125ζ138138    orthogonal faithful

Smallest permutation representation of C652C4
On 65 points
Generators in S65
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65)
(2 9 65 58)(3 17 64 50)(4 25 63 42)(5 33 62 34)(6 41 61 26)(7 49 60 18)(8 57 59 10)(11 16 56 51)(12 24 55 43)(13 32 54 35)(14 40 53 27)(15 48 52 19)(20 23 47 44)(21 31 46 36)(22 39 45 28)(29 30 38 37)

G:=sub<Sym(65)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65), (2,9,65,58)(3,17,64,50)(4,25,63,42)(5,33,62,34)(6,41,61,26)(7,49,60,18)(8,57,59,10)(11,16,56,51)(12,24,55,43)(13,32,54,35)(14,40,53,27)(15,48,52,19)(20,23,47,44)(21,31,46,36)(22,39,45,28)(29,30,38,37)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65), (2,9,65,58)(3,17,64,50)(4,25,63,42)(5,33,62,34)(6,41,61,26)(7,49,60,18)(8,57,59,10)(11,16,56,51)(12,24,55,43)(13,32,54,35)(14,40,53,27)(15,48,52,19)(20,23,47,44)(21,31,46,36)(22,39,45,28)(29,30,38,37) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65)], [(2,9,65,58),(3,17,64,50),(4,25,63,42),(5,33,62,34),(6,41,61,26),(7,49,60,18),(8,57,59,10),(11,16,56,51),(12,24,55,43),(13,32,54,35),(14,40,53,27),(15,48,52,19),(20,23,47,44),(21,31,46,36),(22,39,45,28),(29,30,38,37)]])

Matrix representation of C652C4 in GL4(𝔽521) generated by

29321486404
11749481287
234519228483
38326173320
,
1000
496103472497
3934941724
0010
G:=sub<GL(4,GF(521))| [293,117,234,38,214,494,519,326,86,81,228,173,404,287,483,320],[1,496,393,0,0,103,49,0,0,472,417,1,0,497,24,0] >;

C652C4 in GAP, Magma, Sage, TeX

C_{65}\rtimes_2C_4
% in TeX

G:=Group("C65:2C4");
// GroupNames label

G:=SmallGroup(260,10);
// by ID

G=gap.SmallGroup(260,10);
# by ID

G:=PCGroup([4,-2,-2,-5,-13,8,146,102,2563,1927]);
// Polycyclic

G:=Group<a,b|a^65=b^4=1,b*a*b^-1=a^57>;
// generators/relations

Export

Subgroup lattice of C652C4 in TeX
Character table of C652C4 in TeX

׿
×
𝔽