Copied to
clipboard

G = C7⋊D20order 280 = 23·5·7

The semidirect product of C7 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C353D4, C72D20, Dic7⋊D5, D704C2, D102D7, C14.6D10, C10.6D14, C70.6C22, C51(C7⋊D4), C2.6(D5×D7), (D5×C14)⋊2C2, (C5×Dic7)⋊3C2, SmallGroup(280,12)

Series: Derived Chief Lower central Upper central

C1C70 — C7⋊D20
C1C7C35C70C5×Dic7 — C7⋊D20
C35C70 — C7⋊D20
C1C2

Generators and relations for C7⋊D20
 G = < a,b,c | a7=b20=c2=1, bab-1=cac=a-1, cbc=b-1 >

10C2
70C2
5C22
7C4
35C22
2D5
14D5
10D7
10C14
35D4
7C20
7D10
5D14
5C2×C14
2C7×D5
2D35
7D20
5C7⋊D4

Smallest permutation representation of C7⋊D20
On 140 points
Generators in S140
(1 90 32 63 129 103 53)(2 54 104 130 64 33 91)(3 92 34 65 131 105 55)(4 56 106 132 66 35 93)(5 94 36 67 133 107 57)(6 58 108 134 68 37 95)(7 96 38 69 135 109 59)(8 60 110 136 70 39 97)(9 98 40 71 137 111 41)(10 42 112 138 72 21 99)(11 100 22 73 139 113 43)(12 44 114 140 74 23 81)(13 82 24 75 121 115 45)(14 46 116 122 76 25 83)(15 84 26 77 123 117 47)(16 48 118 124 78 27 85)(17 86 28 79 125 119 49)(18 50 120 126 80 29 87)(19 88 30 61 127 101 51)(20 52 102 128 62 31 89)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 5)(2 4)(6 20)(7 19)(8 18)(9 17)(10 16)(11 15)(12 14)(21 118)(22 117)(23 116)(24 115)(25 114)(26 113)(27 112)(28 111)(29 110)(30 109)(31 108)(32 107)(33 106)(34 105)(35 104)(36 103)(37 102)(38 101)(39 120)(40 119)(41 86)(42 85)(43 84)(44 83)(45 82)(46 81)(47 100)(48 99)(49 98)(50 97)(51 96)(52 95)(53 94)(54 93)(55 92)(56 91)(57 90)(58 89)(59 88)(60 87)(61 135)(62 134)(63 133)(64 132)(65 131)(66 130)(67 129)(68 128)(69 127)(70 126)(71 125)(72 124)(73 123)(74 122)(75 121)(76 140)(77 139)(78 138)(79 137)(80 136)

G:=sub<Sym(140)| (1,90,32,63,129,103,53)(2,54,104,130,64,33,91)(3,92,34,65,131,105,55)(4,56,106,132,66,35,93)(5,94,36,67,133,107,57)(6,58,108,134,68,37,95)(7,96,38,69,135,109,59)(8,60,110,136,70,39,97)(9,98,40,71,137,111,41)(10,42,112,138,72,21,99)(11,100,22,73,139,113,43)(12,44,114,140,74,23,81)(13,82,24,75,121,115,45)(14,46,116,122,76,25,83)(15,84,26,77,123,117,47)(16,48,118,124,78,27,85)(17,86,28,79,125,119,49)(18,50,120,126,80,29,87)(19,88,30,61,127,101,51)(20,52,102,128,62,31,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,118)(22,117)(23,116)(24,115)(25,114)(26,113)(27,112)(28,111)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,120)(40,119)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,100)(48,99)(49,98)(50,97)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)(59,88)(60,87)(61,135)(62,134)(63,133)(64,132)(65,131)(66,130)(67,129)(68,128)(69,127)(70,126)(71,125)(72,124)(73,123)(74,122)(75,121)(76,140)(77,139)(78,138)(79,137)(80,136)>;

G:=Group( (1,90,32,63,129,103,53)(2,54,104,130,64,33,91)(3,92,34,65,131,105,55)(4,56,106,132,66,35,93)(5,94,36,67,133,107,57)(6,58,108,134,68,37,95)(7,96,38,69,135,109,59)(8,60,110,136,70,39,97)(9,98,40,71,137,111,41)(10,42,112,138,72,21,99)(11,100,22,73,139,113,43)(12,44,114,140,74,23,81)(13,82,24,75,121,115,45)(14,46,116,122,76,25,83)(15,84,26,77,123,117,47)(16,48,118,124,78,27,85)(17,86,28,79,125,119,49)(18,50,120,126,80,29,87)(19,88,30,61,127,101,51)(20,52,102,128,62,31,89), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,5)(2,4)(6,20)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(21,118)(22,117)(23,116)(24,115)(25,114)(26,113)(27,112)(28,111)(29,110)(30,109)(31,108)(32,107)(33,106)(34,105)(35,104)(36,103)(37,102)(38,101)(39,120)(40,119)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,100)(48,99)(49,98)(50,97)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)(59,88)(60,87)(61,135)(62,134)(63,133)(64,132)(65,131)(66,130)(67,129)(68,128)(69,127)(70,126)(71,125)(72,124)(73,123)(74,122)(75,121)(76,140)(77,139)(78,138)(79,137)(80,136) );

G=PermutationGroup([[(1,90,32,63,129,103,53),(2,54,104,130,64,33,91),(3,92,34,65,131,105,55),(4,56,106,132,66,35,93),(5,94,36,67,133,107,57),(6,58,108,134,68,37,95),(7,96,38,69,135,109,59),(8,60,110,136,70,39,97),(9,98,40,71,137,111,41),(10,42,112,138,72,21,99),(11,100,22,73,139,113,43),(12,44,114,140,74,23,81),(13,82,24,75,121,115,45),(14,46,116,122,76,25,83),(15,84,26,77,123,117,47),(16,48,118,124,78,27,85),(17,86,28,79,125,119,49),(18,50,120,126,80,29,87),(19,88,30,61,127,101,51),(20,52,102,128,62,31,89)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,5),(2,4),(6,20),(7,19),(8,18),(9,17),(10,16),(11,15),(12,14),(21,118),(22,117),(23,116),(24,115),(25,114),(26,113),(27,112),(28,111),(29,110),(30,109),(31,108),(32,107),(33,106),(34,105),(35,104),(36,103),(37,102),(38,101),(39,120),(40,119),(41,86),(42,85),(43,84),(44,83),(45,82),(46,81),(47,100),(48,99),(49,98),(50,97),(51,96),(52,95),(53,94),(54,93),(55,92),(56,91),(57,90),(58,89),(59,88),(60,87),(61,135),(62,134),(63,133),(64,132),(65,131),(66,130),(67,129),(68,128),(69,127),(70,126),(71,125),(72,124),(73,123),(74,122),(75,121),(76,140),(77,139),(78,138),(79,137),(80,136)]])

37 conjugacy classes

class 1 2A2B2C 4 5A5B7A7B7C10A10B14A14B14C14D···14I20A20B20C20D35A···35F70A···70F
order1222455777101014141414···142020202035···3570···70
size11107014222222222210···10141414144···44···4

37 irreducible representations

dim1111222222244
type++++++++++++
imageC1C2C2C2D4D5D7D10D14D20C7⋊D4D5×D7C7⋊D20
kernelC7⋊D20C5×Dic7D5×C14D70C35Dic7D10C14C10C7C5C2C1
# reps1111123234666

Matrix representation of C7⋊D20 in GL6(𝔽281)

100000
010000
006100
0027923400
000010
000001
,
2422360000
222760000
0042600
003423900
00000280
000010
,
28000000
6510000
0023927500
002474200
000010
00000280

G:=sub<GL(6,GF(281))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,279,0,0,0,0,1,234,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[242,222,0,0,0,0,236,76,0,0,0,0,0,0,42,34,0,0,0,0,6,239,0,0,0,0,0,0,0,1,0,0,0,0,280,0],[280,65,0,0,0,0,0,1,0,0,0,0,0,0,239,247,0,0,0,0,275,42,0,0,0,0,0,0,1,0,0,0,0,0,0,280] >;

C7⋊D20 in GAP, Magma, Sage, TeX

C_7\rtimes D_{20}
% in TeX

G:=Group("C7:D20");
// GroupNames label

G:=SmallGroup(280,12);
// by ID

G=gap.SmallGroup(280,12);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,20,61,328,6004]);
// Polycyclic

G:=Group<a,b,c|a^7=b^20=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7⋊D20 in TeX

׿
×
𝔽