metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D129, C43⋊S3, C3⋊D43, C129⋊1C2, sometimes denoted D258 or Dih129 or Dih258, SmallGroup(258,5)
Series: Derived ►Chief ►Lower central ►Upper central
C129 — D129 |
Generators and relations for D129
G = < a,b | a129=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129)
(1 129)(2 128)(3 127)(4 126)(5 125)(6 124)(7 123)(8 122)(9 121)(10 120)(11 119)(12 118)(13 117)(14 116)(15 115)(16 114)(17 113)(18 112)(19 111)(20 110)(21 109)(22 108)(23 107)(24 106)(25 105)(26 104)(27 103)(28 102)(29 101)(30 100)(31 99)(32 98)(33 97)(34 96)(35 95)(36 94)(37 93)(38 92)(39 91)(40 90)(41 89)(42 88)(43 87)(44 86)(45 85)(46 84)(47 83)(48 82)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 72)(59 71)(60 70)(61 69)(62 68)(63 67)(64 66)
G:=sub<Sym(129)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,129)(2,128)(3,127)(4,126)(5,125)(6,124)(7,123)(8,122)(9,121)(10,120)(11,119)(12,118)(13,117)(14,116)(15,115)(16,114)(17,113)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,129)(2,128)(3,127)(4,126)(5,125)(6,124)(7,123)(8,122)(9,121)(10,120)(11,119)(12,118)(13,117)(14,116)(15,115)(16,114)(17,113)(18,112)(19,111)(20,110)(21,109)(22,108)(23,107)(24,106)(25,105)(26,104)(27,103)(28,102)(29,101)(30,100)(31,99)(32,98)(33,97)(34,96)(35,95)(36,94)(37,93)(38,92)(39,91)(40,90)(41,89)(42,88)(43,87)(44,86)(45,85)(46,84)(47,83)(48,82)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,72)(59,71)(60,70)(61,69)(62,68)(63,67)(64,66) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129)], [(1,129),(2,128),(3,127),(4,126),(5,125),(6,124),(7,123),(8,122),(9,121),(10,120),(11,119),(12,118),(13,117),(14,116),(15,115),(16,114),(17,113),(18,112),(19,111),(20,110),(21,109),(22,108),(23,107),(24,106),(25,105),(26,104),(27,103),(28,102),(29,101),(30,100),(31,99),(32,98),(33,97),(34,96),(35,95),(36,94),(37,93),(38,92),(39,91),(40,90),(41,89),(42,88),(43,87),(44,86),(45,85),(46,84),(47,83),(48,82),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,72),(59,71),(60,70),(61,69),(62,68),(63,67),(64,66)]])
66 conjugacy classes
class | 1 | 2 | 3 | 43A | ··· | 43U | 129A | ··· | 129AP |
order | 1 | 2 | 3 | 43 | ··· | 43 | 129 | ··· | 129 |
size | 1 | 129 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
66 irreducible representations
dim | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | S3 | D43 | D129 |
kernel | D129 | C129 | C43 | C3 | C1 |
# reps | 1 | 1 | 1 | 21 | 42 |
Matrix representation of D129 ►in GL2(𝔽1033) generated by
500 | 117 |
916 | 47 |
765 | 719 |
1015 | 268 |
G:=sub<GL(2,GF(1033))| [500,916,117,47],[765,1015,719,268] >;
D129 in GAP, Magma, Sage, TeX
D_{129}
% in TeX
G:=Group("D129");
// GroupNames label
G:=SmallGroup(258,5);
// by ID
G=gap.SmallGroup(258,5);
# by ID
G:=PCGroup([3,-2,-3,-43,25,2270]);
// Polycyclic
G:=Group<a,b|a^129=b^2=1,b*a*b=a^-1>;
// generators/relations
Export