direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×D43, C43⋊3C6, C129⋊2C2, SmallGroup(258,4)
Series: Derived ►Chief ►Lower central ►Upper central
| C43 — C3×D43 |
Generators and relations for C3×D43
G = < a,b,c | a3=b43=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 121 62)(2 122 63)(3 123 64)(4 124 65)(5 125 66)(6 126 67)(7 127 68)(8 128 69)(9 129 70)(10 87 71)(11 88 72)(12 89 73)(13 90 74)(14 91 75)(15 92 76)(16 93 77)(17 94 78)(18 95 79)(19 96 80)(20 97 81)(21 98 82)(22 99 83)(23 100 84)(24 101 85)(25 102 86)(26 103 44)(27 104 45)(28 105 46)(29 106 47)(30 107 48)(31 108 49)(32 109 50)(33 110 51)(34 111 52)(35 112 53)(36 113 54)(37 114 55)(38 115 56)(39 116 57)(40 117 58)(41 118 59)(42 119 60)(43 120 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43)(44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86)(87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129)
(1 43)(2 42)(3 41)(4 40)(5 39)(6 38)(7 37)(8 36)(9 35)(10 34)(11 33)(12 32)(13 31)(14 30)(15 29)(16 28)(17 27)(18 26)(19 25)(20 24)(21 23)(44 79)(45 78)(46 77)(47 76)(48 75)(49 74)(50 73)(51 72)(52 71)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)(61 62)(80 86)(81 85)(82 84)(87 111)(88 110)(89 109)(90 108)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)(112 129)(113 128)(114 127)(115 126)(116 125)(117 124)(118 123)(119 122)(120 121)
G:=sub<Sym(129)| (1,121,62)(2,122,63)(3,123,64)(4,124,65)(5,125,66)(6,126,67)(7,127,68)(8,128,69)(9,129,70)(10,87,71)(11,88,72)(12,89,73)(13,90,74)(14,91,75)(15,92,76)(16,93,77)(17,94,78)(18,95,79)(19,96,80)(20,97,81)(21,98,82)(22,99,83)(23,100,84)(24,101,85)(25,102,86)(26,103,44)(27,104,45)(28,105,46)(29,106,47)(30,107,48)(31,108,49)(32,109,50)(33,110,51)(34,111,52)(35,112,53)(36,113,54)(37,114,55)(38,115,56)(39,116,57)(40,117,58)(41,118,59)(42,119,60)(43,120,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,36)(9,35)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(80,86)(81,85)(82,84)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(112,129)(113,128)(114,127)(115,126)(116,125)(117,124)(118,123)(119,122)(120,121)>;
G:=Group( (1,121,62)(2,122,63)(3,123,64)(4,124,65)(5,125,66)(6,126,67)(7,127,68)(8,128,69)(9,129,70)(10,87,71)(11,88,72)(12,89,73)(13,90,74)(14,91,75)(15,92,76)(16,93,77)(17,94,78)(18,95,79)(19,96,80)(20,97,81)(21,98,82)(22,99,83)(23,100,84)(24,101,85)(25,102,86)(26,103,44)(27,104,45)(28,105,46)(29,106,47)(30,107,48)(31,108,49)(32,109,50)(33,110,51)(34,111,52)(35,112,53)(36,113,54)(37,114,55)(38,115,56)(39,116,57)(40,117,58)(41,118,59)(42,119,60)(43,120,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43)(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86)(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129), (1,43)(2,42)(3,41)(4,40)(5,39)(6,38)(7,37)(8,36)(9,35)(10,34)(11,33)(12,32)(13,31)(14,30)(15,29)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(44,79)(45,78)(46,77)(47,76)(48,75)(49,74)(50,73)(51,72)(52,71)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63)(61,62)(80,86)(81,85)(82,84)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(112,129)(113,128)(114,127)(115,126)(116,125)(117,124)(118,123)(119,122)(120,121) );
G=PermutationGroup([[(1,121,62),(2,122,63),(3,123,64),(4,124,65),(5,125,66),(6,126,67),(7,127,68),(8,128,69),(9,129,70),(10,87,71),(11,88,72),(12,89,73),(13,90,74),(14,91,75),(15,92,76),(16,93,77),(17,94,78),(18,95,79),(19,96,80),(20,97,81),(21,98,82),(22,99,83),(23,100,84),(24,101,85),(25,102,86),(26,103,44),(27,104,45),(28,105,46),(29,106,47),(30,107,48),(31,108,49),(32,109,50),(33,110,51),(34,111,52),(35,112,53),(36,113,54),(37,114,55),(38,115,56),(39,116,57),(40,117,58),(41,118,59),(42,119,60),(43,120,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43),(44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86),(87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129)], [(1,43),(2,42),(3,41),(4,40),(5,39),(6,38),(7,37),(8,36),(9,35),(10,34),(11,33),(12,32),(13,31),(14,30),(15,29),(16,28),(17,27),(18,26),(19,25),(20,24),(21,23),(44,79),(45,78),(46,77),(47,76),(48,75),(49,74),(50,73),(51,72),(52,71),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63),(61,62),(80,86),(81,85),(82,84),(87,111),(88,110),(89,109),(90,108),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100),(112,129),(113,128),(114,127),(115,126),(116,125),(117,124),(118,123),(119,122),(120,121)]])
69 conjugacy classes
| class | 1 | 2 | 3A | 3B | 6A | 6B | 43A | ··· | 43U | 129A | ··· | 129AP |
| order | 1 | 2 | 3 | 3 | 6 | 6 | 43 | ··· | 43 | 129 | ··· | 129 |
| size | 1 | 43 | 1 | 1 | 43 | 43 | 2 | ··· | 2 | 2 | ··· | 2 |
69 irreducible representations
| dim | 1 | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | |||
| image | C1 | C2 | C3 | C6 | D43 | C3×D43 |
| kernel | C3×D43 | C129 | D43 | C43 | C3 | C1 |
| # reps | 1 | 1 | 2 | 2 | 21 | 42 |
Matrix representation of C3×D43 ►in GL2(𝔽1033) generated by
| 195 | 0 |
| 0 | 195 |
| 912 | 1 |
| 759 | 173 |
| 173 | 1032 |
| 1004 | 860 |
G:=sub<GL(2,GF(1033))| [195,0,0,195],[912,759,1,173],[173,1004,1032,860] >;
C3×D43 in GAP, Magma, Sage, TeX
C_3\times D_{43} % in TeX
G:=Group("C3xD43"); // GroupNames label
G:=SmallGroup(258,4);
// by ID
G=gap.SmallGroup(258,4);
# by ID
G:=PCGroup([3,-2,-3,-43,2270]);
// Polycyclic
G:=Group<a,b,c|a^3=b^43=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export