direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D7×C19, C7⋊C38, C133⋊3C2, SmallGroup(266,1)
Series: Derived ►Chief ►Lower central ►Upper central
C7 — D7×C19 |
Generators and relations for D7×C19
G = < a,b,c | a19=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)
(1 49 66 113 77 130 23)(2 50 67 114 78 131 24)(3 51 68 96 79 132 25)(4 52 69 97 80 133 26)(5 53 70 98 81 115 27)(6 54 71 99 82 116 28)(7 55 72 100 83 117 29)(8 56 73 101 84 118 30)(9 57 74 102 85 119 31)(10 39 75 103 86 120 32)(11 40 76 104 87 121 33)(12 41 58 105 88 122 34)(13 42 59 106 89 123 35)(14 43 60 107 90 124 36)(15 44 61 108 91 125 37)(16 45 62 109 92 126 38)(17 46 63 110 93 127 20)(18 47 64 111 94 128 21)(19 48 65 112 95 129 22)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 20)(18 21)(19 22)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 115)(54 116)(55 117)(56 118)(57 119)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 95)(66 77)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)
G:=sub<Sym(133)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,49,66,113,77,130,23)(2,50,67,114,78,131,24)(3,51,68,96,79,132,25)(4,52,69,97,80,133,26)(5,53,70,98,81,115,27)(6,54,71,99,82,116,28)(7,55,72,100,83,117,29)(8,56,73,101,84,118,30)(9,57,74,102,85,119,31)(10,39,75,103,86,120,32)(11,40,76,104,87,121,33)(12,41,58,105,88,122,34)(13,42,59,106,89,123,35)(14,43,60,107,90,124,36)(15,44,61,108,91,125,37)(16,45,62,109,92,126,38)(17,46,63,110,93,127,20)(18,47,64,111,94,128,21)(19,48,65,112,95,129,22), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,20)(18,21)(19,22)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,115)(54,116)(55,117)(56,118)(57,119)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,49,66,113,77,130,23)(2,50,67,114,78,131,24)(3,51,68,96,79,132,25)(4,52,69,97,80,133,26)(5,53,70,98,81,115,27)(6,54,71,99,82,116,28)(7,55,72,100,83,117,29)(8,56,73,101,84,118,30)(9,57,74,102,85,119,31)(10,39,75,103,86,120,32)(11,40,76,104,87,121,33)(12,41,58,105,88,122,34)(13,42,59,106,89,123,35)(14,43,60,107,90,124,36)(15,44,61,108,91,125,37)(16,45,62,109,92,126,38)(17,46,63,110,93,127,20)(18,47,64,111,94,128,21)(19,48,65,112,95,129,22), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,20)(18,21)(19,22)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,115)(54,116)(55,117)(56,118)(57,119)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)], [(1,49,66,113,77,130,23),(2,50,67,114,78,131,24),(3,51,68,96,79,132,25),(4,52,69,97,80,133,26),(5,53,70,98,81,115,27),(6,54,71,99,82,116,28),(7,55,72,100,83,117,29),(8,56,73,101,84,118,30),(9,57,74,102,85,119,31),(10,39,75,103,86,120,32),(11,40,76,104,87,121,33),(12,41,58,105,88,122,34),(13,42,59,106,89,123,35),(14,43,60,107,90,124,36),(15,44,61,108,91,125,37),(16,45,62,109,92,126,38),(17,46,63,110,93,127,20),(18,47,64,111,94,128,21),(19,48,65,112,95,129,22)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,20),(18,21),(19,22),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,115),(54,116),(55,117),(56,118),(57,119),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,95),(66,77),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87)]])
95 conjugacy classes
class | 1 | 2 | 7A | 7B | 7C | 19A | ··· | 19R | 38A | ··· | 38R | 133A | ··· | 133BB |
order | 1 | 2 | 7 | 7 | 7 | 19 | ··· | 19 | 38 | ··· | 38 | 133 | ··· | 133 |
size | 1 | 7 | 2 | 2 | 2 | 1 | ··· | 1 | 7 | ··· | 7 | 2 | ··· | 2 |
95 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | |||
image | C1 | C2 | C19 | C38 | D7 | D7×C19 |
kernel | D7×C19 | C133 | D7 | C7 | C19 | C1 |
# reps | 1 | 1 | 18 | 18 | 3 | 54 |
Matrix representation of D7×C19 ►in GL2(𝔽1597) generated by
590 | 0 |
0 | 590 |
0 | 1 |
1596 | 1321 |
0 | 1 |
1 | 0 |
G:=sub<GL(2,GF(1597))| [590,0,0,590],[0,1596,1,1321],[0,1,1,0] >;
D7×C19 in GAP, Magma, Sage, TeX
D_7\times C_{19}
% in TeX
G:=Group("D7xC19");
// GroupNames label
G:=SmallGroup(266,1);
// by ID
G=gap.SmallGroup(266,1);
# by ID
G:=PCGroup([3,-2,-19,-7,2054]);
// Polycyclic
G:=Group<a,b,c|a^19=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export