Copied to
clipboard

G = C7×D19order 266 = 2·7·19

Direct product of C7 and D19

direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C7×D19, C19⋊C14, C1332C2, SmallGroup(266,2)

Series: Derived Chief Lower central Upper central

C1C19 — C7×D19
C1C19C133 — C7×D19
C19 — C7×D19
C1C7

Generators and relations for C7×D19
 G = < a,b,c | a7=b19=c2=1, ab=ba, ac=ca, cbc=b-1 >

19C2
19C14

Smallest permutation representation of C7×D19
On 133 points
Generators in S133
(1 132 101 84 70 43 37)(2 133 102 85 71 44 38)(3 115 103 86 72 45 20)(4 116 104 87 73 46 21)(5 117 105 88 74 47 22)(6 118 106 89 75 48 23)(7 119 107 90 76 49 24)(8 120 108 91 58 50 25)(9 121 109 92 59 51 26)(10 122 110 93 60 52 27)(11 123 111 94 61 53 28)(12 124 112 95 62 54 29)(13 125 113 77 63 55 30)(14 126 114 78 64 56 31)(15 127 96 79 65 57 32)(16 128 97 80 66 39 33)(17 129 98 81 67 40 34)(18 130 99 82 68 41 35)(19 131 100 83 69 42 36)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95)(96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114)(115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133)
(1 19)(2 18)(3 17)(4 16)(5 15)(6 14)(7 13)(8 12)(9 11)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 28)(35 38)(36 37)(39 46)(40 45)(41 44)(42 43)(47 57)(48 56)(49 55)(50 54)(51 53)(58 62)(59 61)(63 76)(64 75)(65 74)(66 73)(67 72)(68 71)(69 70)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(91 95)(92 94)(96 105)(97 104)(98 103)(99 102)(100 101)(106 114)(107 113)(108 112)(109 111)(115 129)(116 128)(117 127)(118 126)(119 125)(120 124)(121 123)(130 133)(131 132)

G:=sub<Sym(133)| (1,132,101,84,70,43,37)(2,133,102,85,71,44,38)(3,115,103,86,72,45,20)(4,116,104,87,73,46,21)(5,117,105,88,74,47,22)(6,118,106,89,75,48,23)(7,119,107,90,76,49,24)(8,120,108,91,58,50,25)(9,121,109,92,59,51,26)(10,122,110,93,60,52,27)(11,123,111,94,61,53,28)(12,124,112,95,62,54,29)(13,125,113,77,63,55,30)(14,126,114,78,64,56,31)(15,127,96,79,65,57,32)(16,128,97,80,66,39,33)(17,129,98,81,67,40,34)(18,130,99,82,68,41,35)(19,131,100,83,69,42,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(35,38)(36,37)(39,46)(40,45)(41,44)(42,43)(47,57)(48,56)(49,55)(50,54)(51,53)(58,62)(59,61)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,95)(92,94)(96,105)(97,104)(98,103)(99,102)(100,101)(106,114)(107,113)(108,112)(109,111)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(130,133)(131,132)>;

G:=Group( (1,132,101,84,70,43,37)(2,133,102,85,71,44,38)(3,115,103,86,72,45,20)(4,116,104,87,73,46,21)(5,117,105,88,74,47,22)(6,118,106,89,75,48,23)(7,119,107,90,76,49,24)(8,120,108,91,58,50,25)(9,121,109,92,59,51,26)(10,122,110,93,60,52,27)(11,123,111,94,61,53,28)(12,124,112,95,62,54,29)(13,125,113,77,63,55,30)(14,126,114,78,64,56,31)(15,127,96,79,65,57,32)(16,128,97,80,66,39,33)(17,129,98,81,67,40,34)(18,130,99,82,68,41,35)(19,131,100,83,69,42,36), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95)(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114)(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133), (1,19)(2,18)(3,17)(4,16)(5,15)(6,14)(7,13)(8,12)(9,11)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,28)(35,38)(36,37)(39,46)(40,45)(41,44)(42,43)(47,57)(48,56)(49,55)(50,54)(51,53)(58,62)(59,61)(63,76)(64,75)(65,74)(66,73)(67,72)(68,71)(69,70)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,95)(92,94)(96,105)(97,104)(98,103)(99,102)(100,101)(106,114)(107,113)(108,112)(109,111)(115,129)(116,128)(117,127)(118,126)(119,125)(120,124)(121,123)(130,133)(131,132) );

G=PermutationGroup([[(1,132,101,84,70,43,37),(2,133,102,85,71,44,38),(3,115,103,86,72,45,20),(4,116,104,87,73,46,21),(5,117,105,88,74,47,22),(6,118,106,89,75,48,23),(7,119,107,90,76,49,24),(8,120,108,91,58,50,25),(9,121,109,92,59,51,26),(10,122,110,93,60,52,27),(11,123,111,94,61,53,28),(12,124,112,95,62,54,29),(13,125,113,77,63,55,30),(14,126,114,78,64,56,31),(15,127,96,79,65,57,32),(16,128,97,80,66,39,33),(17,129,98,81,67,40,34),(18,130,99,82,68,41,35),(19,131,100,83,69,42,36)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95),(96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114),(115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133)], [(1,19),(2,18),(3,17),(4,16),(5,15),(6,14),(7,13),(8,12),(9,11),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,28),(35,38),(36,37),(39,46),(40,45),(41,44),(42,43),(47,57),(48,56),(49,55),(50,54),(51,53),(58,62),(59,61),(63,76),(64,75),(65,74),(66,73),(67,72),(68,71),(69,70),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(91,95),(92,94),(96,105),(97,104),(98,103),(99,102),(100,101),(106,114),(107,113),(108,112),(109,111),(115,129),(116,128),(117,127),(118,126),(119,125),(120,124),(121,123),(130,133),(131,132)]])

77 conjugacy classes

class 1  2 7A···7F14A···14F19A···19I133A···133BB
order127···714···1419···19133···133
size1191···119···192···22···2

77 irreducible representations

dim111122
type+++
imageC1C2C7C14D19C7×D19
kernelC7×D19C133D19C19C7C1
# reps1166954

Matrix representation of C7×D19 in GL2(𝔽1597) generated by

11500
01150
,
1591
1372320
,
185551
4481412
G:=sub<GL(2,GF(1597))| [1150,0,0,1150],[159,1372,1,320],[185,448,551,1412] >;

C7×D19 in GAP, Magma, Sage, TeX

C_7\times D_{19}
% in TeX

G:=Group("C7xD19");
// GroupNames label

G:=SmallGroup(266,2);
// by ID

G=gap.SmallGroup(266,2);
# by ID

G:=PCGroup([3,-2,-7,-19,2270]);
// Polycyclic

G:=Group<a,b,c|a^7=b^19=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7×D19 in TeX

׿
×
𝔽