Copied to
clipboard

G = D7×F5order 280 = 23·5·7

Direct product of D7 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×F5, D35⋊C4, D5.1D14, C5⋊(C4×D7), C7⋊F5⋊C2, C35⋊(C2×C4), (C5×D7)⋊C4, (C7×F5)⋊C2, C71(C2×F5), (D5×D7).C2, (C7×D5).C22, SmallGroup(280,32)

Series: Derived Chief Lower central Upper central

C1C35 — D7×F5
C1C7C35C7×D5D5×D7 — D7×F5
C35 — D7×F5
C1

Generators and relations for D7×F5
 G = < a,b,c,d | a7=b2=c5=d4=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c3 >

5C2
7C2
35C2
5C4
35C4
35C22
7D5
7C10
5C14
5D7
35C2×C4
7F5
7D10
5D14
5C28
5Dic7
7C2×F5
5C4×D7

Character table of D7×F5

 class 12A2B2C4A4B4C4D57A7B7C1014A14B14C28A28B28C28D28E28F35A35B35C
 size 15735553535422228101010101010101010888
ρ11111111111111111111111111    trivial
ρ211-1-111-1-11111-1111111111111    linear of order 2
ρ311-1-1-1-1111111-1111-1-1-1-1-1-1111    linear of order 2
ρ41111-1-1-1-111111111-1-1-1-1-1-1111    linear of order 2
ρ51-11-1-iii-i11111-1-1-1-ii-i-iii111    linear of order 4
ρ61-1-11i-ii-i1111-1-1-1-1i-iii-i-i111    linear of order 4
ρ71-11-1i-i-ii11111-1-1-1i-iii-i-i111    linear of order 4
ρ81-1-11-ii-ii1111-1-1-1-1-ii-i-iii111    linear of order 4
ρ92200-2-2002ζ767ζ7473ζ75720ζ7572ζ7473ζ7677473747375727677677572ζ767ζ7473ζ7572    orthogonal lifted from D14
ρ102200-2-2002ζ7572ζ767ζ74730ζ7473ζ767ζ75727677677473757275727473ζ7572ζ767ζ7473    orthogonal lifted from D14
ρ11220022002ζ767ζ7473ζ75720ζ7572ζ7473ζ767ζ7473ζ7473ζ7572ζ767ζ767ζ7572ζ767ζ7473ζ7572    orthogonal lifted from D7
ρ12220022002ζ7572ζ767ζ74730ζ7473ζ767ζ7572ζ767ζ767ζ7473ζ7572ζ7572ζ7473ζ7572ζ767ζ7473    orthogonal lifted from D7
ρ13220022002ζ7473ζ7572ζ7670ζ767ζ7572ζ7473ζ7572ζ7572ζ767ζ7473ζ7473ζ767ζ7473ζ7572ζ767    orthogonal lifted from D7
ρ142200-2-2002ζ7473ζ7572ζ7670ζ767ζ7572ζ74737572757276774737473767ζ7473ζ7572ζ767    orthogonal lifted from D14
ρ152-200-2i2i002ζ7572ζ767ζ7473074737677572ζ43ζ7643ζ7ζ4ζ764ζ7ζ43ζ7443ζ73ζ43ζ7543ζ72ζ4ζ754ζ72ζ4ζ744ζ73ζ7572ζ767ζ7473    complex lifted from C4×D7
ρ162-2002i-2i002ζ7572ζ767ζ7473074737677572ζ4ζ764ζ7ζ43ζ7643ζ7ζ4ζ744ζ73ζ4ζ754ζ72ζ43ζ7543ζ72ζ43ζ7443ζ73ζ7572ζ767ζ7473    complex lifted from C4×D7
ρ172-2002i-2i002ζ767ζ7473ζ7572075727473767ζ4ζ744ζ73ζ43ζ7443ζ73ζ4ζ754ζ72ζ4ζ764ζ7ζ43ζ7643ζ7ζ43ζ7543ζ72ζ767ζ7473ζ7572    complex lifted from C4×D7
ρ182-200-2i2i002ζ7473ζ7572ζ767076775727473ζ43ζ7543ζ72ζ4ζ754ζ72ζ43ζ7643ζ7ζ43ζ7443ζ73ζ4ζ744ζ73ζ4ζ764ζ7ζ7473ζ7572ζ767    complex lifted from C4×D7
ρ192-200-2i2i002ζ767ζ7473ζ7572075727473767ζ43ζ7443ζ73ζ4ζ744ζ73ζ43ζ7543ζ72ζ43ζ7643ζ7ζ4ζ764ζ7ζ4ζ754ζ72ζ767ζ7473ζ7572    complex lifted from C4×D7
ρ202-2002i-2i002ζ7473ζ7572ζ767076775727473ζ4ζ754ζ72ζ43ζ7543ζ72ζ4ζ764ζ7ζ4ζ744ζ73ζ43ζ7443ζ73ζ43ζ7643ζ7ζ7473ζ7572ζ767    complex lifted from C4×D7
ρ2140-400000-14441000000000-1-1-1    orthogonal lifted from C2×F5
ρ2240400000-1444-1000000000-1-1-1    orthogonal lifted from F5
ρ2380000000-276+4ζ774+4ζ7375+4ζ72000000000076774737572    orthogonal faithful
ρ2480000000-275+4ζ7276+4ζ774+4ζ73000000000075727677473    orthogonal faithful
ρ2580000000-274+4ζ7375+4ζ7276+4ζ7000000000074737572767    orthogonal faithful

Smallest permutation representation of D7×F5
On 35 points
Generators in S35
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)
(1 13 20 27 34)(2 14 21 28 35)(3 8 15 22 29)(4 9 16 23 30)(5 10 17 24 31)(6 11 18 25 32)(7 12 19 26 33)
(8 15 29 22)(9 16 30 23)(10 17 31 24)(11 18 32 25)(12 19 33 26)(13 20 34 27)(14 21 35 28)

G:=sub<Sym(35)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34), (1,13,20,27,34)(2,14,21,28,35)(3,8,15,22,29)(4,9,16,23,30)(5,10,17,24,31)(6,11,18,25,32)(7,12,19,26,33), (8,15,29,22)(9,16,30,23)(10,17,31,24)(11,18,32,25)(12,19,33,26)(13,20,34,27)(14,21,35,28)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34), (1,13,20,27,34)(2,14,21,28,35)(3,8,15,22,29)(4,9,16,23,30)(5,10,17,24,31)(6,11,18,25,32)(7,12,19,26,33), (8,15,29,22)(9,16,30,23)(10,17,31,24)(11,18,32,25)(12,19,33,26)(13,20,34,27)(14,21,35,28) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34)], [(1,13,20,27,34),(2,14,21,28,35),(3,8,15,22,29),(4,9,16,23,30),(5,10,17,24,31),(6,11,18,25,32),(7,12,19,26,33)], [(8,15,29,22),(9,16,30,23),(10,17,31,24),(11,18,32,25),(12,19,33,26),(13,20,34,27),(14,21,35,28)]])

Matrix representation of D7×F5 in GL6(𝔽281)

7560000
2802330000
001000
000100
000010
000001
,
2742250000
4170000
00280000
00028000
00002800
00000280
,
100000
010000
00111175
00211175
00121175
00888277
,
22800000
02280000
000010
001000
00280280280106
000001

G:=sub<GL(6,GF(281))| [7,280,0,0,0,0,56,233,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[274,41,0,0,0,0,225,7,0,0,0,0,0,0,280,0,0,0,0,0,0,280,0,0,0,0,0,0,280,0,0,0,0,0,0,280],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,2,1,8,0,0,1,1,2,8,0,0,1,1,1,8,0,0,175,175,175,277],[228,0,0,0,0,0,0,228,0,0,0,0,0,0,0,1,280,0,0,0,0,0,280,0,0,0,1,0,280,0,0,0,0,0,106,1] >;

D7×F5 in GAP, Magma, Sage, TeX

D_7\times F_5
% in TeX

G:=Group("D7xF5");
// GroupNames label

G:=SmallGroup(280,32);
// by ID

G=gap.SmallGroup(280,32);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,26,168,173,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^5=d^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^3>;
// generators/relations

Export

Subgroup lattice of D7×F5 in TeX
Character table of D7×F5 in TeX

׿
×
𝔽