extension | φ:Q→Aut N | d | ρ | Label | ID |
C35⋊(C2×C4) = D7×F5 | φ: C2×C4/C1 → C2×C4 ⊆ Aut C35 | 35 | 8+ | C35:(C2xC4) | 280,32 |
C35⋊2(C2×C4) = C2×C7⋊F5 | φ: C2×C4/C2 → C4 ⊆ Aut C35 | 70 | 4 | C35:2(C2xC4) | 280,35 |
C35⋊3(C2×C4) = C14×F5 | φ: C2×C4/C2 → C4 ⊆ Aut C35 | 70 | 4 | C35:3(C2xC4) | 280,34 |
C35⋊4(C2×C4) = D7×Dic5 | φ: C2×C4/C2 → C22 ⊆ Aut C35 | 140 | 4- | C35:4(C2xC4) | 280,7 |
C35⋊5(C2×C4) = D5×Dic7 | φ: C2×C4/C2 → C22 ⊆ Aut C35 | 140 | 4- | C35:5(C2xC4) | 280,8 |
C35⋊6(C2×C4) = D70.C2 | φ: C2×C4/C2 → C22 ⊆ Aut C35 | 140 | 4+ | C35:6(C2xC4) | 280,9 |
C35⋊7(C2×C4) = C4×D35 | φ: C2×C4/C4 → C2 ⊆ Aut C35 | 140 | 2 | C35:7(C2xC4) | 280,25 |
C35⋊8(C2×C4) = D7×C20 | φ: C2×C4/C4 → C2 ⊆ Aut C35 | 140 | 2 | C35:8(C2xC4) | 280,15 |
C35⋊9(C2×C4) = D5×C28 | φ: C2×C4/C4 → C2 ⊆ Aut C35 | 140 | 2 | C35:9(C2xC4) | 280,20 |
C35⋊10(C2×C4) = C2×Dic35 | φ: C2×C4/C22 → C2 ⊆ Aut C35 | 280 | | C35:10(C2xC4) | 280,27 |
C35⋊11(C2×C4) = C10×Dic7 | φ: C2×C4/C22 → C2 ⊆ Aut C35 | 280 | | C35:11(C2xC4) | 280,17 |
C35⋊12(C2×C4) = C14×Dic5 | φ: C2×C4/C22 → C2 ⊆ Aut C35 | 280 | | C35:12(C2xC4) | 280,22 |