Copied to
clipboard

G = D42D17order 272 = 24·17

The semidirect product of D4 and D17 acting through Inn(D4)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D42D17, C4.5D34, Dic343C2, C34.6C23, C68.5C22, C22.1D34, D34.2C22, Dic17.8C22, (C4×D17)⋊2C2, (D4×C17)⋊3C2, C172(C4○D4), C17⋊D42C2, (C2×C34).C22, (C2×Dic17)⋊3C2, C2.7(C22×D17), SmallGroup(272,41)

Series: Derived Chief Lower central Upper central

C1C34 — D42D17
C1C17C34D34C4×D17 — D42D17
C17C34 — D42D17
C1C2D4

Generators and relations for D42D17
 G = < a,b,c,d | a4=b2=c17=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >

2C2
2C2
34C2
17C4
17C22
17C4
17C4
2C34
2C34
2D17
17C2×C4
17D4
17D4
17C2×C4
17Q8
17C2×C4
17C4○D4

Smallest permutation representation of D42D17
On 136 points
Generators in S136
(1 102 24 77)(2 86 25 78)(3 87 26 79)(4 88 27 80)(5 89 28 81)(6 90 29 82)(7 91 30 83)(8 92 31 84)(9 93 32 85)(10 94 33 69)(11 95 34 70)(12 96 18 71)(13 97 19 72)(14 98 20 73)(15 99 21 74)(16 100 22 75)(17 101 23 76)(35 126 62 106)(36 127 63 107)(37 128 64 108)(38 129 65 109)(39 130 66 110)(40 131 67 111)(41 132 68 112)(42 133 52 113)(43 134 53 114)(44 135 54 115)(45 136 55 116)(46 120 56 117)(47 121 57 118)(48 122 58 119)(49 123 59 103)(50 124 60 104)(51 125 61 105)
(1 103)(2 104)(3 105)(4 106)(5 107)(6 108)(7 109)(8 110)(9 111)(10 112)(11 113)(12 114)(13 115)(14 116)(15 117)(16 118)(17 119)(18 134)(19 135)(20 136)(21 120)(22 121)(23 122)(24 123)(25 124)(26 125)(27 126)(28 127)(29 128)(30 129)(31 130)(32 131)(33 132)(34 133)(35 80)(36 81)(37 82)(38 83)(39 84)(40 85)(41 69)(42 70)(43 71)(44 72)(45 73)(46 74)(47 75)(48 76)(49 77)(50 78)(51 79)(52 95)(53 96)(54 97)(55 98)(56 99)(57 100)(58 101)(59 102)(60 86)(61 87)(62 88)(63 89)(64 90)(65 91)(66 92)(67 93)(68 94)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85)(86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)(103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119)(120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136)
(1 17)(2 16)(3 15)(4 14)(5 13)(6 12)(7 11)(8 10)(18 29)(19 28)(20 27)(21 26)(22 25)(23 24)(30 34)(31 33)(35 55)(36 54)(37 53)(38 52)(39 68)(40 67)(41 66)(42 65)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)(49 58)(50 57)(51 56)(69 84)(70 83)(71 82)(72 81)(73 80)(74 79)(75 78)(76 77)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)(101 102)(103 122)(104 121)(105 120)(106 136)(107 135)(108 134)(109 133)(110 132)(111 131)(112 130)(113 129)(114 128)(115 127)(116 126)(117 125)(118 124)(119 123)

G:=sub<Sym(136)| (1,102,24,77)(2,86,25,78)(3,87,26,79)(4,88,27,80)(5,89,28,81)(6,90,29,82)(7,91,30,83)(8,92,31,84)(9,93,32,85)(10,94,33,69)(11,95,34,70)(12,96,18,71)(13,97,19,72)(14,98,20,73)(15,99,21,74)(16,100,22,75)(17,101,23,76)(35,126,62,106)(36,127,63,107)(37,128,64,108)(38,129,65,109)(39,130,66,110)(40,131,67,111)(41,132,68,112)(42,133,52,113)(43,134,53,114)(44,135,54,115)(45,136,55,116)(46,120,56,117)(47,121,57,118)(48,122,58,119)(49,123,59,103)(50,124,60,104)(51,125,61,105), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,134)(19,135)(20,136)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,133)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(30,34)(31,33)(35,55)(36,54)(37,53)(38,52)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,102)(103,122)(104,121)(105,120)(106,136)(107,135)(108,134)(109,133)(110,132)(111,131)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123)>;

G:=Group( (1,102,24,77)(2,86,25,78)(3,87,26,79)(4,88,27,80)(5,89,28,81)(6,90,29,82)(7,91,30,83)(8,92,31,84)(9,93,32,85)(10,94,33,69)(11,95,34,70)(12,96,18,71)(13,97,19,72)(14,98,20,73)(15,99,21,74)(16,100,22,75)(17,101,23,76)(35,126,62,106)(36,127,63,107)(37,128,64,108)(38,129,65,109)(39,130,66,110)(40,131,67,111)(41,132,68,112)(42,133,52,113)(43,134,53,114)(44,135,54,115)(45,136,55,116)(46,120,56,117)(47,121,57,118)(48,122,58,119)(49,123,59,103)(50,124,60,104)(51,125,61,105), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,134)(19,135)(20,136)(21,120)(22,121)(23,122)(24,123)(25,124)(26,125)(27,126)(28,127)(29,128)(30,129)(31,130)(32,131)(33,132)(34,133)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,95)(53,96)(54,97)(55,98)(56,99)(57,100)(58,101)(59,102)(60,86)(61,87)(62,88)(63,89)(64,90)(65,91)(66,92)(67,93)(68,94), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85)(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119)(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136), (1,17)(2,16)(3,15)(4,14)(5,13)(6,12)(7,11)(8,10)(18,29)(19,28)(20,27)(21,26)(22,25)(23,24)(30,34)(31,33)(35,55)(36,54)(37,53)(38,52)(39,68)(40,67)(41,66)(42,65)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59)(49,58)(50,57)(51,56)(69,84)(70,83)(71,82)(72,81)(73,80)(74,79)(75,78)(76,77)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)(101,102)(103,122)(104,121)(105,120)(106,136)(107,135)(108,134)(109,133)(110,132)(111,131)(112,130)(113,129)(114,128)(115,127)(116,126)(117,125)(118,124)(119,123) );

G=PermutationGroup([[(1,102,24,77),(2,86,25,78),(3,87,26,79),(4,88,27,80),(5,89,28,81),(6,90,29,82),(7,91,30,83),(8,92,31,84),(9,93,32,85),(10,94,33,69),(11,95,34,70),(12,96,18,71),(13,97,19,72),(14,98,20,73),(15,99,21,74),(16,100,22,75),(17,101,23,76),(35,126,62,106),(36,127,63,107),(37,128,64,108),(38,129,65,109),(39,130,66,110),(40,131,67,111),(41,132,68,112),(42,133,52,113),(43,134,53,114),(44,135,54,115),(45,136,55,116),(46,120,56,117),(47,121,57,118),(48,122,58,119),(49,123,59,103),(50,124,60,104),(51,125,61,105)], [(1,103),(2,104),(3,105),(4,106),(5,107),(6,108),(7,109),(8,110),(9,111),(10,112),(11,113),(12,114),(13,115),(14,116),(15,117),(16,118),(17,119),(18,134),(19,135),(20,136),(21,120),(22,121),(23,122),(24,123),(25,124),(26,125),(27,126),(28,127),(29,128),(30,129),(31,130),(32,131),(33,132),(34,133),(35,80),(36,81),(37,82),(38,83),(39,84),(40,85),(41,69),(42,70),(43,71),(44,72),(45,73),(46,74),(47,75),(48,76),(49,77),(50,78),(51,79),(52,95),(53,96),(54,97),(55,98),(56,99),(57,100),(58,101),(59,102),(60,86),(61,87),(62,88),(63,89),(64,90),(65,91),(66,92),(67,93),(68,94)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85),(86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102),(103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119),(120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136)], [(1,17),(2,16),(3,15),(4,14),(5,13),(6,12),(7,11),(8,10),(18,29),(19,28),(20,27),(21,26),(22,25),(23,24),(30,34),(31,33),(35,55),(36,54),(37,53),(38,52),(39,68),(40,67),(41,66),(42,65),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59),(49,58),(50,57),(51,56),(69,84),(70,83),(71,82),(72,81),(73,80),(74,79),(75,78),(76,77),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94),(101,102),(103,122),(104,121),(105,120),(106,136),(107,135),(108,134),(109,133),(110,132),(111,131),(112,130),(113,129),(114,128),(115,127),(116,126),(117,125),(118,124),(119,123)]])

50 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E17A···17H34A···34H34I···34X68A···68H
order122224444417···1734···3434···3468···68
size1122342171734342···22···24···44···4

50 irreducible representations

dim11111122224
type+++++++++-
imageC1C2C2C2C2C2C4○D4D17D34D34D42D17
kernelD42D17Dic34C4×D17C2×Dic17C17⋊D4D4×C17C17D4C4C22C1
# reps111221288168

Matrix representation of D42D17 in GL4(𝔽137) generated by

136000
013600
001000
003237
,
1000
0100
0010060
003237
,
0100
1363000
0010
0001
,
0100
1000
0010
0088136
G:=sub<GL(4,GF(137))| [136,0,0,0,0,136,0,0,0,0,100,32,0,0,0,37],[1,0,0,0,0,1,0,0,0,0,100,32,0,0,60,37],[0,136,0,0,1,30,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,88,0,0,0,136] >;

D42D17 in GAP, Magma, Sage, TeX

D_4\rtimes_2D_{17}
% in TeX

G:=Group("D4:2D17");
// GroupNames label

G:=SmallGroup(272,41);
// by ID

G=gap.SmallGroup(272,41);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,46,182,97,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^17=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D42D17 in TeX

׿
×
𝔽