Extensions 1→N→G→Q→1 with N=C6 and Q=D22

Direct product G=N×Q with N=C6 and Q=D22
dρLabelID
C2×C6×D11132C2xC6xD11264,36

Semidirect products G=N:Q with N=C6 and Q=D22
extensionφ:Q→Aut NdρLabelID
C61D22 = C2×S3×D11φ: D22/D11C2 ⊆ Aut C6664+C6:1D22264,34
C62D22 = C22×D33φ: D22/C22C2 ⊆ Aut C6132C6:2D22264,38

Non-split extensions G=N.Q with N=C6 and Q=D22
extensionφ:Q→Aut NdρLabelID
C6.1D22 = Dic3×D11φ: D22/D11C2 ⊆ Aut C61324-C6.1D22264,5
C6.2D22 = S3×Dic11φ: D22/D11C2 ⊆ Aut C61324-C6.2D22264,6
C6.3D22 = D33⋊C4φ: D22/D11C2 ⊆ Aut C61324+C6.3D22264,7
C6.4D22 = C33⋊D4φ: D22/D11C2 ⊆ Aut C61324-C6.4D22264,8
C6.5D22 = C3⋊D44φ: D22/D11C2 ⊆ Aut C61324+C6.5D22264,9
C6.6D22 = C11⋊D12φ: D22/D11C2 ⊆ Aut C61324+C6.6D22264,10
C6.7D22 = C33⋊Q8φ: D22/D11C2 ⊆ Aut C62644-C6.7D22264,11
C6.8D22 = Dic66φ: D22/C22C2 ⊆ Aut C62642-C6.8D22264,23
C6.9D22 = C4×D33φ: D22/C22C2 ⊆ Aut C61322C6.9D22264,24
C6.10D22 = D132φ: D22/C22C2 ⊆ Aut C61322+C6.10D22264,25
C6.11D22 = C2×Dic33φ: D22/C22C2 ⊆ Aut C6264C6.11D22264,26
C6.12D22 = C337D4φ: D22/C22C2 ⊆ Aut C61322C6.12D22264,27
C6.13D22 = C3×Dic22central extension (φ=1)2642C6.13D22264,13
C6.14D22 = C12×D11central extension (φ=1)1322C6.14D22264,14
C6.15D22 = C3×D44central extension (φ=1)1322C6.15D22264,15
C6.16D22 = C6×Dic11central extension (φ=1)264C6.16D22264,16
C6.17D22 = C3×C11⋊D4central extension (φ=1)1322C6.17D22264,17

׿
×
𝔽