Copied to
clipboard

G = D4xD17order 272 = 24·17

Direct product of D4 and D17

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4xD17, C4:1D34, C68:C22, D68:3C2, C22:1D34, D34:2C22, C34.5C23, Dic17:1C22, C17:2(C2xD4), (C2xC34):C22, (C4xD17):1C2, (D4xC17):2C2, C17:D4:1C2, (C22xD17):2C2, C2.6(C22xD17), SmallGroup(272,40)

Series: Derived Chief Lower central Upper central

C1C34 — D4xD17
C1C17C34D34C22xD17 — D4xD17
C17C34 — D4xD17
C1C2D4

Generators and relations for D4xD17
 G = < a,b,c,d | a4=b2=c17=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 470 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2xC4, D4, D4, C23, C2xD4, C17, D17, D17, C34, C34, Dic17, C68, D34, D34, D34, C2xC34, C4xD17, D68, C17:D4, D4xC17, C22xD17, D4xD17
Quotients: C1, C2, C22, D4, C23, C2xD4, D17, D34, C22xD17, D4xD17

Smallest permutation representation of D4xD17
On 68 points
Generators in S68
(1 37 25 52)(2 38 26 53)(3 39 27 54)(4 40 28 55)(5 41 29 56)(6 42 30 57)(7 43 31 58)(8 44 32 59)(9 45 33 60)(10 46 34 61)(11 47 18 62)(12 48 19 63)(13 49 20 64)(14 50 21 65)(15 51 22 66)(16 35 23 67)(17 36 24 68)
(35 67)(36 68)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(35 53)(36 52)(37 68)(38 67)(39 66)(40 65)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 54)

G:=sub<Sym(68)| (1,37,25,52)(2,38,26,53)(3,39,27,54)(4,40,28,55)(5,41,29,56)(6,42,30,57)(7,43,31,58)(8,44,32,59)(9,45,33,60)(10,46,34,61)(11,47,18,62)(12,48,19,63)(13,49,20,64)(14,50,21,65)(15,51,22,66)(16,35,23,67)(17,36,24,68), (35,67)(36,68)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(35,53)(36,52)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)>;

G:=Group( (1,37,25,52)(2,38,26,53)(3,39,27,54)(4,40,28,55)(5,41,29,56)(6,42,30,57)(7,43,31,58)(8,44,32,59)(9,45,33,60)(10,46,34,61)(11,47,18,62)(12,48,19,63)(13,49,20,64)(14,50,21,65)(15,51,22,66)(16,35,23,67)(17,36,24,68), (35,67)(36,68)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(35,53)(36,52)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54) );

G=PermutationGroup([[(1,37,25,52),(2,38,26,53),(3,39,27,54),(4,40,28,55),(5,41,29,56),(6,42,30,57),(7,43,31,58),(8,44,32,59),(9,45,33,60),(10,46,34,61),(11,47,18,62),(12,48,19,63),(13,49,20,64),(14,50,21,65),(15,51,22,66),(16,35,23,67),(17,36,24,68)], [(35,67),(36,68),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(35,53),(36,52),(37,68),(38,67),(39,66),(40,65),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,54)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B17A···17H34A···34H34I···34X68A···68H
order122222224417···1734···3434···3468···68
size1122171734342342···22···24···44···4

50 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D17D34D34D4xD17
kernelD4xD17C4xD17D68C17:D4D4xC17C22xD17D17D4C4C22C1
# reps111212288168

Matrix representation of D4xD17 in GL4(F137) generated by

1000
0100
000136
0010
,
1000
0100
0010
000136
,
7100
232300
0010
0001
,
884000
774900
001360
000136
G:=sub<GL(4,GF(137))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,136,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,136],[7,23,0,0,1,23,0,0,0,0,1,0,0,0,0,1],[88,77,0,0,40,49,0,0,0,0,136,0,0,0,0,136] >;

D4xD17 in GAP, Magma, Sage, TeX

D_4\times D_{17}
% in TeX

G:=Group("D4xD17");
// GroupNames label

G:=SmallGroup(272,40);
// by ID

G=gap.SmallGroup(272,40);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,97,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^17=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<