Copied to
clipboard

G = D4×D17order 272 = 24·17

Direct product of D4 and D17

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D17, C41D34, C68⋊C22, D683C2, C221D34, D342C22, C34.5C23, Dic171C22, C172(C2×D4), (C2×C34)⋊C22, (C4×D17)⋊1C2, (D4×C17)⋊2C2, C17⋊D41C2, (C22×D17)⋊2C2, C2.6(C22×D17), SmallGroup(272,40)

Series: Derived Chief Lower central Upper central

C1C34 — D4×D17
C1C17C34D34C22×D17 — D4×D17
C17C34 — D4×D17
C1C2D4

Generators and relations for D4×D17
 G = < a,b,c,d | a4=b2=c17=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 470 in 54 conjugacy classes, 25 normal (13 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, D4, D4, C23, C2×D4, C17, D17, D17, C34, C34, Dic17, C68, D34, D34, D34, C2×C34, C4×D17, D68, C17⋊D4, D4×C17, C22×D17, D4×D17
Quotients: C1, C2, C22, D4, C23, C2×D4, D17, D34, C22×D17, D4×D17

Smallest permutation representation of D4×D17
On 68 points
Generators in S68
(1 37 25 52)(2 38 26 53)(3 39 27 54)(4 40 28 55)(5 41 29 56)(6 42 30 57)(7 43 31 58)(8 44 32 59)(9 45 33 60)(10 46 34 61)(11 47 18 62)(12 48 19 63)(13 49 20 64)(14 50 21 65)(15 51 22 66)(16 35 23 67)(17 36 24 68)
(35 67)(36 68)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17)(18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51)(52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 34)(9 33)(10 32)(11 31)(12 30)(13 29)(14 28)(15 27)(16 26)(17 25)(35 53)(36 52)(37 68)(38 67)(39 66)(40 65)(41 64)(42 63)(43 62)(44 61)(45 60)(46 59)(47 58)(48 57)(49 56)(50 55)(51 54)

G:=sub<Sym(68)| (1,37,25,52)(2,38,26,53)(3,39,27,54)(4,40,28,55)(5,41,29,56)(6,42,30,57)(7,43,31,58)(8,44,32,59)(9,45,33,60)(10,46,34,61)(11,47,18,62)(12,48,19,63)(13,49,20,64)(14,50,21,65)(15,51,22,66)(16,35,23,67)(17,36,24,68), (35,67)(36,68)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(35,53)(36,52)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54)>;

G:=Group( (1,37,25,52)(2,38,26,53)(3,39,27,54)(4,40,28,55)(5,41,29,56)(6,42,30,57)(7,43,31,58)(8,44,32,59)(9,45,33,60)(10,46,34,61)(11,47,18,62)(12,48,19,63)(13,49,20,64)(14,50,21,65)(15,51,22,66)(16,35,23,67)(17,36,24,68), (35,67)(36,68)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17)(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51)(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,34)(9,33)(10,32)(11,31)(12,30)(13,29)(14,28)(15,27)(16,26)(17,25)(35,53)(36,52)(37,68)(38,67)(39,66)(40,65)(41,64)(42,63)(43,62)(44,61)(45,60)(46,59)(47,58)(48,57)(49,56)(50,55)(51,54) );

G=PermutationGroup([[(1,37,25,52),(2,38,26,53),(3,39,27,54),(4,40,28,55),(5,41,29,56),(6,42,30,57),(7,43,31,58),(8,44,32,59),(9,45,33,60),(10,46,34,61),(11,47,18,62),(12,48,19,63),(13,49,20,64),(14,50,21,65),(15,51,22,66),(16,35,23,67),(17,36,24,68)], [(35,67),(36,68),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17),(18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51),(52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,34),(9,33),(10,32),(11,31),(12,30),(13,29),(14,28),(15,27),(16,26),(17,25),(35,53),(36,52),(37,68),(38,67),(39,66),(40,65),(41,64),(42,63),(43,62),(44,61),(45,60),(46,59),(47,58),(48,57),(49,56),(50,55),(51,54)]])

50 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B17A···17H34A···34H34I···34X68A···68H
order122222224417···1734···3434···3468···68
size1122171734342342···22···24···44···4

50 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D17D34D34D4×D17
kernelD4×D17C4×D17D68C17⋊D4D4×C17C22×D17D17D4C4C22C1
# reps111212288168

Matrix representation of D4×D17 in GL4(𝔽137) generated by

1000
0100
000136
0010
,
1000
0100
0010
000136
,
7100
232300
0010
0001
,
884000
774900
001360
000136
G:=sub<GL(4,GF(137))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,136,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,136],[7,23,0,0,1,23,0,0,0,0,1,0,0,0,0,1],[88,77,0,0,40,49,0,0,0,0,136,0,0,0,0,136] >;

D4×D17 in GAP, Magma, Sage, TeX

D_4\times D_{17}
% in TeX

G:=Group("D4xD17");
// GroupNames label

G:=SmallGroup(272,40);
// by ID

G=gap.SmallGroup(272,40);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-17,97,6404]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^17=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽