Extensions 1→N→G→Q→1 with N=C22 and Q=D6

Direct product G=N×Q with N=C22 and Q=D6
dρLabelID
S3×C2×C22132S3xC2xC22264,37

Semidirect products G=N:Q with N=C22 and Q=D6
extensionφ:Q→Aut NdρLabelID
C221D6 = C2×S3×D11φ: D6/S3C2 ⊆ Aut C22664+C22:1D6264,34
C222D6 = C22×D33φ: D6/C6C2 ⊆ Aut C22132C22:2D6264,38

Non-split extensions G=N.Q with N=C22 and Q=D6
extensionφ:Q→Aut NdρLabelID
C22.1D6 = Dic3×D11φ: D6/S3C2 ⊆ Aut C221324-C22.1D6264,5
C22.2D6 = S3×Dic11φ: D6/S3C2 ⊆ Aut C221324-C22.2D6264,6
C22.3D6 = D33⋊C4φ: D6/S3C2 ⊆ Aut C221324+C22.3D6264,7
C22.4D6 = C33⋊D4φ: D6/S3C2 ⊆ Aut C221324-C22.4D6264,8
C22.5D6 = C3⋊D44φ: D6/S3C2 ⊆ Aut C221324+C22.5D6264,9
C22.6D6 = C11⋊D12φ: D6/S3C2 ⊆ Aut C221324+C22.6D6264,10
C22.7D6 = C33⋊Q8φ: D6/S3C2 ⊆ Aut C222644-C22.7D6264,11
C22.8D6 = Dic66φ: D6/C6C2 ⊆ Aut C222642-C22.8D6264,23
C22.9D6 = C4×D33φ: D6/C6C2 ⊆ Aut C221322C22.9D6264,24
C22.10D6 = D132φ: D6/C6C2 ⊆ Aut C221322+C22.10D6264,25
C22.11D6 = C2×Dic33φ: D6/C6C2 ⊆ Aut C22264C22.11D6264,26
C22.12D6 = C337D4φ: D6/C6C2 ⊆ Aut C221322C22.12D6264,27
C22.13D6 = C11×Dic6central extension (φ=1)2642C22.13D6264,18
C22.14D6 = S3×C44central extension (φ=1)1322C22.14D6264,19
C22.15D6 = C11×D12central extension (φ=1)1322C22.15D6264,20
C22.16D6 = Dic3×C22central extension (φ=1)264C22.16D6264,21
C22.17D6 = C11×C3⋊D4central extension (φ=1)1322C22.17D6264,22

׿
×
𝔽