extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊Dic3)⋊1C2 = D12⋊3Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):1C2 | 288,210 |
(C3×C4⋊Dic3)⋊2C2 = C6.17D24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):2C2 | 288,212 |
(C3×C4⋊Dic3)⋊3C2 = C3×D4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):3C2 | 288,266 |
(C3×C4⋊Dic3)⋊4C2 = C62.11C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):4C2 | 288,489 |
(C3×C4⋊Dic3)⋊5C2 = C62.18C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):5C2 | 288,496 |
(C3×C4⋊Dic3)⋊6C2 = C62.19C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):6C2 | 288,497 |
(C3×C4⋊Dic3)⋊7C2 = C62.24C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):7C2 | 288,502 |
(C3×C4⋊Dic3)⋊8C2 = D6⋊7Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):8C2 | 288,505 |
(C3×C4⋊Dic3)⋊9C2 = C62.28C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):9C2 | 288,506 |
(C3×C4⋊Dic3)⋊10C2 = C12.30D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):10C2 | 288,519 |
(C3×C4⋊Dic3)⋊11C2 = S3×C4⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):11C2 | 288,537 |
(C3×C4⋊Dic3)⋊12C2 = D6.D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):12C2 | 288,538 |
(C3×C4⋊Dic3)⋊13C2 = Dic3⋊5D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):13C2 | 288,542 |
(C3×C4⋊Dic3)⋊14C2 = C62.65C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):14C2 | 288,543 |
(C3×C4⋊Dic3)⋊15C2 = D12⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):15C2 | 288,546 |
(C3×C4⋊Dic3)⋊16C2 = D6⋊4Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):16C2 | 288,547 |
(C3×C4⋊Dic3)⋊17C2 = C62.70C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):17C2 | 288,548 |
(C3×C4⋊Dic3)⋊18C2 = C12⋊7D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):18C2 | 288,557 |
(C3×C4⋊Dic3)⋊19C2 = C12⋊2D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):19C2 | 288,564 |
(C3×C4⋊Dic3)⋊20C2 = C3×S3×C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):20C2 | 288,662 |
(C3×C4⋊Dic3)⋊21C2 = C3×C4⋊C4⋊7S3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):21C2 | 288,663 |
(C3×C4⋊Dic3)⋊22C2 = C3×D4×Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):22C2 | 288,705 |
(C3×C4⋊Dic3)⋊23C2 = C3×D6⋊3D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):23C2 | 288,709 |
(C3×C4⋊Dic3)⋊24C2 = C3×D6⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):24C2 | 288,717 |
(C3×C4⋊Dic3)⋊25C2 = C3×C2.D24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):25C2 | 288,255 |
(C3×C4⋊Dic3)⋊26C2 = C3×Dic3.D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):26C2 | 288,649 |
(C3×C4⋊Dic3)⋊27C2 = C3×C23.8D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):27C2 | 288,650 |
(C3×C4⋊Dic3)⋊28C2 = C3×C23.9D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):28C2 | 288,654 |
(C3×C4⋊Dic3)⋊29C2 = C3×C23.21D6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):29C2 | 288,657 |
(C3×C4⋊Dic3)⋊30C2 = C3×C4.D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):30C2 | 288,668 |
(C3×C4⋊Dic3)⋊31C2 = C3×C4⋊C4⋊S3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3):31C2 | 288,669 |
(C3×C4⋊Dic3)⋊32C2 = C3×C12.48D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):32C2 | 288,695 |
(C3×C4⋊Dic3)⋊33C2 = C3×C12⋊7D4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 48 | | (C3xC4:Dic3):33C2 | 288,701 |
(C3×C4⋊Dic3)⋊34C2 = C12×D12 | φ: trivial image | 96 | | (C3xC4:Dic3):34C2 | 288,644 |
(C3×C4⋊Dic3)⋊35C2 = C3×C23.26D6 | φ: trivial image | 48 | | (C3xC4:Dic3):35C2 | 288,697 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×C4⋊Dic3).1C2 = Dic6⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).1C2 | 288,213 |
(C3×C4⋊Dic3).2C2 = C12.73D12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).2C2 | 288,215 |
(C3×C4⋊Dic3).3C2 = C12.Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).3C2 | 288,221 |
(C3×C4⋊Dic3).4C2 = C12.6Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).4C2 | 288,222 |
(C3×C4⋊Dic3).5C2 = C6.18D24 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).5C2 | 288,223 |
(C3×C4⋊Dic3).6C2 = C12.8Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).6C2 | 288,224 |
(C3×C4⋊Dic3).7C2 = C3×C6.Q16 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).7C2 | 288,241 |
(C3×C4⋊Dic3).8C2 = C3×C12.Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).8C2 | 288,242 |
(C3×C4⋊Dic3).9C2 = C3×Q8⋊2Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).9C2 | 288,269 |
(C3×C4⋊Dic3).10C2 = C62.13C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).10C2 | 288,491 |
(C3×C4⋊Dic3).11C2 = Dic3⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).11C2 | 288,492 |
(C3×C4⋊Dic3).12C2 = C62.16C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).12C2 | 288,494 |
(C3×C4⋊Dic3).13C2 = C62.17C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).13C2 | 288,495 |
(C3×C4⋊Dic3).14C2 = C62.39C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).14C2 | 288,517 |
(C3×C4⋊Dic3).15C2 = C62.42C23 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).15C2 | 288,520 |
(C3×C4⋊Dic3).16C2 = C12⋊3Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).16C2 | 288,566 |
(C3×C4⋊Dic3).17C2 = C12⋊Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).17C2 | 288,567 |
(C3×C4⋊Dic3).18C2 = C3×C12⋊Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).18C2 | 288,659 |
(C3×C4⋊Dic3).19C2 = C3×Q8×Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).19C2 | 288,716 |
(C3×C4⋊Dic3).20C2 = C3×C2.Dic12 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).20C2 | 288,250 |
(C3×C4⋊Dic3).21C2 = C3×C8⋊Dic3 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).21C2 | 288,251 |
(C3×C4⋊Dic3).22C2 = C3×C24⋊1C4 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).22C2 | 288,252 |
(C3×C4⋊Dic3).23C2 = C3×C12⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).23C2 | 288,640 |
(C3×C4⋊Dic3).24C2 = C3×C12.6Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).24C2 | 288,641 |
(C3×C4⋊Dic3).25C2 = C3×Dic3.Q8 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).25C2 | 288,660 |
(C3×C4⋊Dic3).26C2 = C3×C4.Dic6 | φ: C2/C1 → C2 ⊆ Out C3×C4⋊Dic3 | 96 | | (C3xC4:Dic3).26C2 | 288,661 |
(C3×C4⋊Dic3).27C2 = C12×Dic6 | φ: trivial image | 96 | | (C3xC4:Dic3).27C2 | 288,639 |