Extensions 1→N→G→Q→1 with N=Q83S3 and Q=S3

Direct product G=N×Q with N=Q83S3 and Q=S3
dρLabelID
S3×Q83S3488+S3xQ8:3S3288,966

Semidirect products G=N:Q with N=Q83S3 and Q=S3
extensionφ:Q→Out NdρLabelID
Q83S31S3 = Dic3.4S4φ: S3/C1S3 ⊆ Out Q83S3484Q8:3S3:1S3288,845
Q83S32S3 = Dic3.5S4φ: S3/C1S3 ⊆ Out Q83S3484+Q8:3S3:2S3288,846
Q83S33S3 = GL2(𝔽3)⋊S3φ: S3/C1S3 ⊆ Out Q83S3484+Q8:3S3:3S3288,847
Q83S34S3 = D126D6φ: S3/C3C2 ⊆ Out Q83S3488+Q8:3S3:4S3288,587
Q83S35S3 = D12.12D6φ: S3/C3C2 ⊆ Out Q83S3968-Q8:3S3:5S3288,595
Q83S36S3 = D12.13D6φ: S3/C3C2 ⊆ Out Q83S3488+Q8:3S3:6S3288,597
Q83S37S3 = D12.25D6φ: S3/C3C2 ⊆ Out Q83S3488-Q8:3S3:7S3288,963
Q83S38S3 = D1216D6φ: S3/C3C2 ⊆ Out Q83S3488+Q8:3S3:8S3288,968
Q83S39S3 = D1215D6φ: trivial image488-Q8:3S3:9S3288,967

Non-split extensions G=N.Q with N=Q83S3 and Q=S3
extensionφ:Q→Out NdρLabelID
Q83S3.S3 = CSU2(𝔽3)⋊S3φ: S3/C1S3 ⊆ Out Q83S3964Q8:3S3.S3288,844
Q83S3.2S3 = D12.11D6φ: S3/C3C2 ⊆ Out Q83S3968-Q8:3S3.2S3288,591

׿
×
𝔽