Extensions 1→N→G→Q→1 with N=C2 and Q=S3×S4

Direct product G=N×Q with N=C2 and Q=S3×S4
dρLabelID
C2×S3×S4186+C2xS3xS4288,1028


Non-split extensions G=N.Q with N=C2 and Q=S3×S4
extensionφ:Q→Aut NdρLabelID
C2.1(S3×S4) = Dic3×S4central extension (φ=1)366-C2.1(S3xS4)288,853
C2.2(S3×S4) = Dic32S4central extension (φ=1)366C2.2(S3xS4)288,854
C2.3(S3×S4) = S3×A4⋊C4central extension (φ=1)366C2.3(S3xS4)288,856
C2.4(S3×S4) = CSU2(𝔽3)⋊S3central stem extension (φ=1)964C2.4(S3xS4)288,844
C2.5(S3×S4) = Dic3.4S4central stem extension (φ=1)484C2.5(S3xS4)288,845
C2.6(S3×S4) = Dic3.5S4central stem extension (φ=1)484+C2.6(S3xS4)288,846
C2.7(S3×S4) = GL2(𝔽3)⋊S3central stem extension (φ=1)484+C2.7(S3xS4)288,847
C2.8(S3×S4) = S3×CSU2(𝔽3)central stem extension (φ=1)484-C2.8(S3xS4)288,848
C2.9(S3×S4) = D6.S4central stem extension (φ=1)484-C2.9(S3xS4)288,849
C2.10(S3×S4) = D6.2S4central stem extension (φ=1)484C2.10(S3xS4)288,850
C2.11(S3×S4) = S3×GL2(𝔽3)central stem extension (φ=1)244C2.11(S3xS4)288,851
C2.12(S3×S4) = Dic3.S4central stem extension (φ=1)726-C2.12(S3xS4)288,852
C2.13(S3×S4) = Dic3⋊S4central stem extension (φ=1)366C2.13(S3xS4)288,855
C2.14(S3×S4) = D6⋊S4central stem extension (φ=1)366C2.14(S3xS4)288,857
C2.15(S3×S4) = A4⋊D12central stem extension (φ=1)366+C2.15(S3xS4)288,858

׿
×
𝔽