Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C2xC6

Direct product G=NxQ with N=C2xDic3 and Q=C2xC6
dρLabelID
Dic3xC22xC696Dic3xC2^2xC6288,1001

Semidirect products G=N:Q with N=C2xDic3 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C2xC6) = C3xD6:D4φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3):1(C2xC6)288,653
(C2xDic3):2(C2xC6) = C3xC23:2D6φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3):2(C2xC6)288,708
(C2xDic3):3(C2xC6) = C3xC24:4S3φ: C2xC6/C3C22 ⊆ Out C2xDic324(C2xDic3):3(C2xC6)288,724
(C2xDic3):4(C2xC6) = C3xD4:6D6φ: C2xC6/C3C22 ⊆ Out C2xDic3244(C2xDic3):4(C2xC6)288,994
(C2xDic3):5(C2xC6) = C3xS3xC22:C4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3):5(C2xC6)288,651
(C2xDic3):6(C2xC6) = C6xD6:C4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3):6(C2xC6)288,698
(C2xDic3):7(C2xC6) = C6xC6.D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3):7(C2xC6)288,723
(C2xDic3):8(C2xC6) = S3xC6xD4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3):8(C2xC6)288,992
(C2xDic3):9(C2xC6) = C6xD4:2S3φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3):9(C2xC6)288,993
(C2xDic3):10(C2xC6) = C3xS3xC4oD4φ: C2xC6/C6C2 ⊆ Out C2xDic3484(C2xDic3):10(C2xC6)288,998
(C2xDic3):11(C2xC6) = C2xC6xC3:D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3):11(C2xC6)288,1002
(C2xDic3):12(C2xC6) = S3xC22xC12φ: trivial image96(C2xDic3):12(C2xC6)288,989

Non-split extensions G=N.Q with N=C2xDic3 and Q=C2xC6
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C2xC6) = C3xC12:2Q8φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).1(C2xC6)288,640
(C2xDic3).2(C2xC6) = C3xC12.6Q8φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).2(C2xC6)288,641
(C2xDic3).3(C2xC6) = C3xC42:7S3φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).3(C2xC6)288,646
(C2xDic3).4(C2xC6) = C3xC42:3S3φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).4(C2xC6)288,647
(C2xDic3).5(C2xC6) = C3xDic3.D4φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).5(C2xC6)288,649
(C2xDic3).6(C2xC6) = C3xC23.9D6φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).6(C2xC6)288,654
(C2xDic3).7(C2xC6) = C3xD6:Q8φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).7(C2xC6)288,667
(C2xDic3).8(C2xC6) = C3xC4.D12φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).8(C2xC6)288,668
(C2xDic3).9(C2xC6) = C3xC12.48D4φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).9(C2xC6)288,695
(C2xDic3).10(C2xC6) = C3xC23.28D6φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).10(C2xC6)288,700
(C2xDic3).11(C2xC6) = C3xC12:7D4φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).11(C2xC6)288,701
(C2xDic3).12(C2xC6) = C3xD6:3D4φ: C2xC6/C3C22 ⊆ Out C2xDic348(C2xDic3).12(C2xC6)288,709
(C2xDic3).13(C2xC6) = C3xDic3:Q8φ: C2xC6/C3C22 ⊆ Out C2xDic396(C2xDic3).13(C2xC6)288,715
(C2xDic3).14(C2xC6) = C3xQ8oD12φ: C2xC6/C3C22 ⊆ Out C2xDic3484(C2xDic3).14(C2xC6)288,1000
(C2xDic3).15(C2xC6) = C12xDic6φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).15(C2xC6)288,639
(C2xDic3).16(C2xC6) = C3xC42:2S3φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).16(C2xC6)288,643
(C2xDic3).17(C2xC6) = C12xD12φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).17(C2xC6)288,644
(C2xDic3).18(C2xC6) = C3xC23.16D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).18(C2xC6)288,648
(C2xDic3).19(C2xC6) = C3xC23.8D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).19(C2xC6)288,650
(C2xDic3).20(C2xC6) = C3xDic3:4D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).20(C2xC6)288,652
(C2xDic3).21(C2xC6) = C3xDic3:D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).21(C2xC6)288,655
(C2xDic3).22(C2xC6) = C3xC23.11D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).22(C2xC6)288,656
(C2xDic3).23(C2xC6) = C3xC23.21D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).23(C2xC6)288,657
(C2xDic3).24(C2xC6) = C3xDic6:C4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).24(C2xC6)288,658
(C2xDic3).25(C2xC6) = C3xC12:Q8φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).25(C2xC6)288,659
(C2xDic3).26(C2xC6) = C3xDic3.Q8φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).26(C2xC6)288,660
(C2xDic3).27(C2xC6) = C3xC4.Dic6φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).27(C2xC6)288,661
(C2xDic3).28(C2xC6) = C3xS3xC4:C4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).28(C2xC6)288,662
(C2xDic3).29(C2xC6) = C3xD6.D4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).29(C2xC6)288,665
(C2xDic3).30(C2xC6) = C3xC12:D4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).30(C2xC6)288,666
(C2xDic3).31(C2xC6) = C3xC4:C4:S3φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).31(C2xC6)288,669
(C2xDic3).32(C2xC6) = C6xDic3:C4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).32(C2xC6)288,694
(C2xDic3).33(C2xC6) = C6xC4:Dic3φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).33(C2xC6)288,696
(C2xDic3).34(C2xC6) = C3xC23.26D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).34(C2xC6)288,697
(C2xDic3).35(C2xC6) = C12xC3:D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).35(C2xC6)288,699
(C2xDic3).36(C2xC6) = C3xC23.23D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).36(C2xC6)288,706
(C2xDic3).37(C2xC6) = C3xC23.12D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).37(C2xC6)288,707
(C2xDic3).38(C2xC6) = C3xC23.14D6φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).38(C2xC6)288,710
(C2xDic3).39(C2xC6) = C3xC12:3D4φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).39(C2xC6)288,711
(C2xDic3).40(C2xC6) = C3xQ8xDic3φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).40(C2xC6)288,716
(C2xDic3).41(C2xC6) = C3xD6:3Q8φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).41(C2xC6)288,717
(C2xDic3).42(C2xC6) = C3xC12.23D4φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).42(C2xC6)288,718
(C2xDic3).43(C2xC6) = C2xC6xDic6φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).43(C2xC6)288,988
(C2xDic3).44(C2xC6) = C6xC4oD12φ: C2xC6/C6C2 ⊆ Out C2xDic348(C2xDic3).44(C2xC6)288,991
(C2xDic3).45(C2xC6) = S3xC6xQ8φ: C2xC6/C6C2 ⊆ Out C2xDic396(C2xDic3).45(C2xC6)288,995
(C2xDic3).46(C2xC6) = S3xC4xC12φ: trivial image96(C2xDic3).46(C2xC6)288,642
(C2xDic3).47(C2xC6) = C3xC4:C4:7S3φ: trivial image96(C2xDic3).47(C2xC6)288,663
(C2xDic3).48(C2xC6) = C3xDic3:5D4φ: trivial image96(C2xDic3).48(C2xC6)288,664
(C2xDic3).49(C2xC6) = Dic3xC2xC12φ: trivial image96(C2xDic3).49(C2xC6)288,693
(C2xDic3).50(C2xC6) = C3xD4xDic3φ: trivial image48(C2xDic3).50(C2xC6)288,705
(C2xDic3).51(C2xC6) = C6xQ8:3S3φ: trivial image96(C2xDic3).51(C2xC6)288,996

׿
x
:
Z
F
o
wr
Q
<