Extensions 1→N→G→Q→1 with N=C3⋊S3 and Q=SD16

Direct product G=N×Q with N=C3⋊S3 and Q=SD16
dρLabelID
SD16×C3⋊S372SD16xC3:S3288,770

Semidirect products G=N:Q with N=C3⋊S3 and Q=SD16
extensionφ:Q→Out NdρLabelID
C3⋊S3⋊SD16 = C2×AΓL1(𝔽9)φ: SD16/C2D4 ⊆ Out C3⋊S3188+C3:S3:SD16288,1027
C3⋊S32SD16 = C3⋊S32SD16φ: SD16/C4C22 ⊆ Out C3⋊S3248+C3:S3:2SD16288,875
C3⋊S33SD16 = C249D6φ: SD16/C8C2 ⊆ Out C3⋊S3484C3:S3:3SD16288,444
C3⋊S34SD16 = Dic6⋊D6φ: SD16/D4C2 ⊆ Out C3⋊S3248+C3:S3:4SD16288,578
C3⋊S35SD16 = D12.9D6φ: SD16/Q8C2 ⊆ Out C3⋊S3488-C3:S3:5SD16288,588

Non-split extensions G=N.Q with N=C3⋊S3 and Q=SD16
extensionφ:Q→Out NdρLabelID
C3⋊S3.SD16 = F9⋊C4φ: SD16/C2D4 ⊆ Out C3⋊S3368C3:S3.SD16288,843
C3⋊S3.2SD16 = C3⋊S3.2D8φ: SD16/C4C22 ⊆ Out C3⋊S3244C3:S3.2SD16288,377
C3⋊S3.3SD16 = C3⋊S3.2Q16φ: SD16/C4C22 ⊆ Out C3⋊S3484C3:S3.3SD16288,378
C3⋊S3.4SD16 = C4.PSU3(𝔽2)φ: SD16/C4C22 ⊆ Out C3⋊S3488C3:S3.4SD16288,393
C3⋊S3.5SD16 = C8⋊(C32⋊C4)φ: SD16/C8C2 ⊆ Out C3⋊S3484C3:S3.5SD16288,416
C3⋊S3.6SD16 = C3⋊S3.5D8φ: SD16/D4C2 ⊆ Out C3⋊S3248+C3:S3.6SD16288,430
C3⋊S3.7SD16 = C3⋊S3.5Q16φ: SD16/Q8C2 ⊆ Out C3⋊S3488-C3:S3.7SD16288,432

׿
×
𝔽