non-abelian, soluble, monomial
Aliases: C4.12S3≀C2, (C3×C12).4D4, C3⋊S3.2Q16, C32⋊2Q8⋊1C4, C3⋊S3.3SD16, C32⋊2(Q8⋊C4), Dic3.D6.2C2, C12.29D6.2C2, C2.6(S32⋊C4), (C2×C3⋊S3).6D4, C4⋊(C32⋊C4).1C2, (C4×C3⋊S3).4C22, C3⋊Dic3.6(C2×C4), (C3×C6).5(C22⋊C4), SmallGroup(288,378)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3⋊Dic3 — C3⋊S3.2Q16 |
C1 — C32 — C3×C6 — C3⋊Dic3 — C4×C3⋊S3 — Dic3.D6 — C3⋊S3.2Q16 |
C32 — C3×C6 — C3⋊Dic3 — C3⋊S3.2Q16 |
Generators and relations for C3⋊S3.2Q16
G = < a,b,c,d,e | a3=b3=c2=d8=1, e2=d4, ab=ba, cac=dbd-1=a-1, dad-1=cbc=ebe-1=b-1, ae=ea, cd=dc, ce=ec, ede-1=cd-1 >
Subgroups: 368 in 72 conjugacy classes, 17 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C2×C4, Q8, C32, Dic3, C12, D6, C4⋊C4, C2×C8, C2×Q8, C3⋊S3, C3×C6, C3⋊C8, C24, Dic6, C4×S3, C3×Q8, Q8⋊C4, C3×Dic3, C3⋊Dic3, C3×C12, C32⋊C4, C2×C3⋊S3, S3×C8, S3×Q8, C3×C3⋊C8, C6.D6, C32⋊2Q8, C3×Dic6, C4×C3⋊S3, C2×C32⋊C4, C12.29D6, C4⋊(C32⋊C4), Dic3.D6, C3⋊S3.2Q16
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, SD16, Q16, Q8⋊C4, S3≀C2, S32⋊C4, C3⋊S3.2Q16
Character table of C3⋊S3.2Q16
class | 1 | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 24A | 24B | 24C | 24D | |
size | 1 | 1 | 9 | 9 | 4 | 4 | 2 | 12 | 12 | 18 | 36 | 36 | 4 | 4 | 6 | 6 | 6 | 6 | 4 | 4 | 8 | 24 | 24 | 12 | 12 | 12 | 12 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -i | i | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | 1 | -1 | -i | -i | i | i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -i | i | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | -1 | 1 | i | i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | i | -i | 1 | 1 | i | i | -i | -i | -1 | -1 | -1 | 1 | -1 | i | i | -i | -i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | i | -i | 1 | 1 | -i | -i | i | i | -1 | -1 | -1 | -1 | 1 | -i | -i | i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ12 | 2 | -2 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ13 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -√-2 | √-2 | √-2 | -√-2 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ14 | 2 | -2 | -2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | √-2 | -√-2 | -√-2 | √-2 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ15 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | -2 | -2 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ16 | 4 | 4 | 0 | 0 | -2 | 1 | 4 | 2 | 2 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | -2 | -2 | 1 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S3≀C2 |
ρ17 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | 2 | -2 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ18 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | -2 | 0 | 0 | -1 | -1 | -1 | -1 | orthogonal lifted from S3≀C2 |
ρ19 | 4 | 4 | 0 | 0 | 1 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2 | -2 | -2 | -2 | 1 | 1 | -2 | 0 | 0 | 1 | 1 | 1 | 1 | orthogonal lifted from S3≀C2 |
ρ20 | 4 | 4 | 0 | 0 | -2 | 1 | -4 | -2 | 2 | 0 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -1 | -1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32⋊C4 |
ρ21 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | 2i | 2i | -2i | -2i | -1 | -1 | 2 | 0 | 0 | -i | -i | i | i | complex lifted from S32⋊C4 |
ρ22 | 4 | 4 | 0 | 0 | 1 | -2 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 1 | -2i | -2i | 2i | 2i | -1 | -1 | 2 | 0 | 0 | i | i | -i | -i | complex lifted from S32⋊C4 |
ρ23 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2ζ83 | 2ζ87 | 2ζ85 | 2ζ8 | -3i | 3i | 0 | 0 | 0 | ζ83 | ζ87 | ζ85 | ζ8 | complex faithful |
ρ24 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2ζ8 | 2ζ85 | 2ζ87 | 2ζ83 | 3i | -3i | 0 | 0 | 0 | ζ8 | ζ85 | ζ87 | ζ83 | complex faithful |
ρ25 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2ζ87 | 2ζ83 | 2ζ8 | 2ζ85 | -3i | 3i | 0 | 0 | 0 | ζ87 | ζ83 | ζ8 | ζ85 | complex faithful |
ρ26 | 4 | -4 | 0 | 0 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -1 | 2ζ85 | 2ζ8 | 2ζ83 | 2ζ87 | 3i | -3i | 0 | 0 | 0 | ζ85 | ζ8 | ζ83 | ζ87 | complex faithful |
ρ27 | 8 | -8 | 0 | 0 | -4 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 28 38)(2 29 39)(3 30 40)(4 31 33)(5 32 34)(6 25 35)(7 26 36)(8 27 37)(9 46 19)(10 20 47)(11 48 21)(12 22 41)(13 42 23)(14 24 43)(15 44 17)(16 18 45)
(1 38 28)(2 39 29)(3 40 30)(4 33 31)(5 34 32)(6 35 25)(7 36 26)(8 37 27)(9 46 19)(10 20 47)(11 48 21)(12 22 41)(13 42 23)(14 24 43)(15 44 17)(16 18 45)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(25 39)(26 40)(27 33)(28 34)(29 35)(30 36)(31 37)(32 38)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 13 5 9)(2 16 6 12)(3 11 7 15)(4 14 8 10)(17 40 21 36)(18 25 22 29)(19 38 23 34)(20 31 24 27)(26 44 30 48)(28 42 32 46)(33 43 37 47)(35 41 39 45)
G:=sub<Sym(48)| (1,28,38)(2,29,39)(3,30,40)(4,31,33)(5,32,34)(6,25,35)(7,26,36)(8,27,37)(9,46,19)(10,20,47)(11,48,21)(12,22,41)(13,42,23)(14,24,43)(15,44,17)(16,18,45), (1,38,28)(2,39,29)(3,40,30)(4,33,31)(5,34,32)(6,35,25)(7,36,26)(8,37,27)(9,46,19)(10,20,47)(11,48,21)(12,22,41)(13,42,23)(14,24,43)(15,44,17)(16,18,45), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,16,6,12)(3,11,7,15)(4,14,8,10)(17,40,21,36)(18,25,22,29)(19,38,23,34)(20,31,24,27)(26,44,30,48)(28,42,32,46)(33,43,37,47)(35,41,39,45)>;
G:=Group( (1,28,38)(2,29,39)(3,30,40)(4,31,33)(5,32,34)(6,25,35)(7,26,36)(8,27,37)(9,46,19)(10,20,47)(11,48,21)(12,22,41)(13,42,23)(14,24,43)(15,44,17)(16,18,45), (1,38,28)(2,39,29)(3,40,30)(4,33,31)(5,34,32)(6,35,25)(7,36,26)(8,37,27)(9,46,19)(10,20,47)(11,48,21)(12,22,41)(13,42,23)(14,24,43)(15,44,17)(16,18,45), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(25,39)(26,40)(27,33)(28,34)(29,35)(30,36)(31,37)(32,38), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,13,5,9)(2,16,6,12)(3,11,7,15)(4,14,8,10)(17,40,21,36)(18,25,22,29)(19,38,23,34)(20,31,24,27)(26,44,30,48)(28,42,32,46)(33,43,37,47)(35,41,39,45) );
G=PermutationGroup([[(1,28,38),(2,29,39),(3,30,40),(4,31,33),(5,32,34),(6,25,35),(7,26,36),(8,27,37),(9,46,19),(10,20,47),(11,48,21),(12,22,41),(13,42,23),(14,24,43),(15,44,17),(16,18,45)], [(1,38,28),(2,39,29),(3,40,30),(4,33,31),(5,34,32),(6,35,25),(7,36,26),(8,37,27),(9,46,19),(10,20,47),(11,48,21),(12,22,41),(13,42,23),(14,24,43),(15,44,17),(16,18,45)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(25,39),(26,40),(27,33),(28,34),(29,35),(30,36),(31,37),(32,38)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,13,5,9),(2,16,6,12),(3,11,7,15),(4,14,8,10),(17,40,21,36),(18,25,22,29),(19,38,23,34),(20,31,24,27),(26,44,30,48),(28,42,32,46),(33,43,37,47),(35,41,39,45)]])
Matrix representation of C3⋊S3.2Q16 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
57 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
12 | 61 | 0 | 0 | 0 | 0 |
6 | 61 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,57,0,0,0,0,32,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,6,0,0,0,0,61,61,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
C3⋊S3.2Q16 in GAP, Magma, Sage, TeX
C_3\rtimes S_3._2Q_{16}
% in TeX
G:=Group("C3:S3.2Q16");
// GroupNames label
G:=SmallGroup(288,378);
// by ID
G=gap.SmallGroup(288,378);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,112,85,64,422,100,675,80,2693,2028,691,797,2372]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^8=1,e^2=d^4,a*b=b*a,c*a*c=d*b*d^-1=a^-1,d*a*d^-1=c*b*c=e*b*e^-1=b^-1,a*e=e*a,c*d=d*c,c*e=e*c,e*d*e^-1=c*d^-1>;
// generators/relations
Export