Extensions 1→N→G→Q→1 with N=C3×A4 and Q=D4

Direct product G=N×Q with N=C3×A4 and Q=D4
dρLabelID
C3×D4×A4366C3xD4xA4288,980

Semidirect products G=N:Q with N=C3×A4 and Q=D4
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊1D4 = Dic3⋊S4φ: D4/C2C22 ⊆ Out C3×A4366(C3xA4):1D4288,855
(C3×A4)⋊2D4 = D6⋊S4φ: D4/C2C22 ⊆ Out C3×A4366(C3xA4):2D4288,857
(C3×A4)⋊3D4 = A4⋊D12φ: D4/C2C22 ⊆ Out C3×A4366+(C3xA4):3D4288,858
(C3×A4)⋊4D4 = C3×C4⋊S4φ: D4/C4C2 ⊆ Out C3×A4366(C3xA4):4D4288,898
(C3×A4)⋊5D4 = C12⋊S4φ: D4/C4C2 ⊆ Out C3×A4366+(C3xA4):5D4288,909
(C3×A4)⋊6D4 = A4×D12φ: D4/C4C2 ⊆ Out C3×A4366+(C3xA4):6D4288,920
(C3×A4)⋊7D4 = C3×A4⋊D4φ: D4/C22C2 ⊆ Out C3×A4366(C3xA4):7D4288,906
(C3×A4)⋊8D4 = (C2×C6)⋊4S4φ: D4/C22C2 ⊆ Out C3×A4366(C3xA4):8D4288,917
(C3×A4)⋊9D4 = A4×C3⋊D4φ: D4/C22C2 ⊆ Out C3×A4366(C3xA4):9D4288,928


׿
×
𝔽