extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1(C2×Q8) = C4.3PSU3(𝔽2) | φ: C2×Q8/C2 → Q8 ⊆ Aut C3×C6 | 48 | 8 | (C3xC6).1(C2xQ8) | 288,891 |
(C3×C6).2(C2×Q8) = C4×PSU3(𝔽2) | φ: C2×Q8/C2 → Q8 ⊆ Aut C3×C6 | 36 | 8 | (C3xC6).2(C2xQ8) | 288,892 |
(C3×C6).3(C2×Q8) = C4⋊PSU3(𝔽2) | φ: C2×Q8/C2 → Q8 ⊆ Aut C3×C6 | 36 | 8 | (C3xC6).3(C2xQ8) | 288,893 |
(C3×C6).4(C2×Q8) = C2×C2.PSU3(𝔽2) | φ: C2×Q8/C2 → Q8 ⊆ Aut C3×C6 | 48 | | (C3xC6).4(C2xQ8) | 288,894 |
(C3×C6).5(C2×Q8) = C62⋊Q8 | φ: C2×Q8/C2 → Q8 ⊆ Aut C3×C6 | 24 | 8+ | (C3xC6).5(C2xQ8) | 288,895 |
(C3×C6).6(C2×Q8) = Dic3⋊5Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).6(C2xQ8) | 288,485 |
(C3×C6).7(C2×Q8) = C62.8C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).7(C2xQ8) | 288,486 |
(C3×C6).8(C2×Q8) = C62.9C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).8(C2xQ8) | 288,487 |
(C3×C6).9(C2×Q8) = C62.10C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).9(C2xQ8) | 288,488 |
(C3×C6).10(C2×Q8) = Dic3×Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).10(C2xQ8) | 288,490 |
(C3×C6).11(C2×Q8) = C62.13C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).11(C2xQ8) | 288,491 |
(C3×C6).12(C2×Q8) = Dic3⋊6Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).12(C2xQ8) | 288,492 |
(C3×C6).13(C2×Q8) = Dic3.Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).13(C2xQ8) | 288,493 |
(C3×C6).14(C2×Q8) = C62.16C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).14(C2xQ8) | 288,494 |
(C3×C6).15(C2×Q8) = C62.17C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).15(C2xQ8) | 288,495 |
(C3×C6).16(C2×Q8) = D6⋊Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).16(C2xQ8) | 288,499 |
(C3×C6).17(C2×Q8) = D6⋊6Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).17(C2xQ8) | 288,504 |
(C3×C6).18(C2×Q8) = D6⋊7Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).18(C2xQ8) | 288,505 |
(C3×C6).19(C2×Q8) = C62.35C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).19(C2xQ8) | 288,513 |
(C3×C6).20(C2×Q8) = Dic3⋊Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).20(C2xQ8) | 288,514 |
(C3×C6).21(C2×Q8) = C62.37C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).21(C2xQ8) | 288,515 |
(C3×C6).22(C2×Q8) = C62.40C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).22(C2xQ8) | 288,518 |
(C3×C6).23(C2×Q8) = C12.30D12 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).23(C2xQ8) | 288,519 |
(C3×C6).24(C2×Q8) = C62.43C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).24(C2xQ8) | 288,521 |
(C3×C6).25(C2×Q8) = S3×Dic3⋊C4 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).25(C2xQ8) | 288,524 |
(C3×C6).26(C2×Q8) = C62.53C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).26(C2xQ8) | 288,531 |
(C3×C6).27(C2×Q8) = D6⋊1Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).27(C2xQ8) | 288,535 |
(C3×C6).28(C2×Q8) = C62.58C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).28(C2xQ8) | 288,536 |
(C3×C6).29(C2×Q8) = S3×C4⋊Dic3 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).29(C2xQ8) | 288,537 |
(C3×C6).30(C2×Q8) = D6⋊2Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).30(C2xQ8) | 288,541 |
(C3×C6).31(C2×Q8) = C62.65C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).31(C2xQ8) | 288,543 |
(C3×C6).32(C2×Q8) = D6⋊3Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).32(C2xQ8) | 288,544 |
(C3×C6).33(C2×Q8) = D6⋊4Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).33(C2xQ8) | 288,547 |
(C3×C6).34(C2×Q8) = C62.70C23 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).34(C2xQ8) | 288,548 |
(C3×C6).35(C2×Q8) = C12⋊Dic6 | φ: C2×Q8/C4 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).35(C2xQ8) | 288,567 |
(C3×C6).36(C2×Q8) = C62.39C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).36(C2xQ8) | 288,517 |
(C3×C6).37(C2×Q8) = C62.42C23 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).37(C2xQ8) | 288,520 |
(C3×C6).38(C2×Q8) = C4×C32⋊2Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).38(C2xQ8) | 288,565 |
(C3×C6).39(C2×Q8) = C12⋊3Dic6 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).39(C2xQ8) | 288,566 |
(C3×C6).40(C2×Q8) = C62⋊3Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).40(C2xQ8) | 288,612 |
(C3×C6).41(C2×Q8) = C2×Dic3⋊Dic3 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).41(C2xQ8) | 288,613 |
(C3×C6).42(C2×Q8) = C2×C62.C22 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 96 | | (C3xC6).42(C2xQ8) | 288,615 |
(C3×C6).43(C2×Q8) = C62⋊4Q8 | φ: C2×Q8/C22 → C22 ⊆ Aut C3×C6 | 48 | | (C3xC6).43(C2xQ8) | 288,630 |
(C3×C6).44(C2×Q8) = C12×Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).44(C2xQ8) | 288,639 |
(C3×C6).45(C2×Q8) = C3×C12⋊2Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).45(C2xQ8) | 288,640 |
(C3×C6).46(C2×Q8) = C3×C12.6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).46(C2xQ8) | 288,641 |
(C3×C6).47(C2×Q8) = C3×Dic3.D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).47(C2xQ8) | 288,649 |
(C3×C6).48(C2×Q8) = C3×C4.Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).48(C2xQ8) | 288,661 |
(C3×C6).49(C2×Q8) = C6×Dic3⋊C4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).49(C2xQ8) | 288,694 |
(C3×C6).50(C2×Q8) = C3×C12.48D4 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 48 | | (C3xC6).50(C2xQ8) | 288,695 |
(C3×C6).51(C2×Q8) = C6×C4⋊Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).51(C2xQ8) | 288,696 |
(C3×C6).52(C2×Q8) = C4×C32⋊4Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).52(C2xQ8) | 288,725 |
(C3×C6).53(C2×Q8) = C12⋊6Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).53(C2xQ8) | 288,726 |
(C3×C6).54(C2×Q8) = C12.25Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).54(C2xQ8) | 288,727 |
(C3×C6).55(C2×Q8) = C62⋊6Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).55(C2xQ8) | 288,735 |
(C3×C6).56(C2×Q8) = C12⋊2Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).56(C2xQ8) | 288,745 |
(C3×C6).57(C2×Q8) = C62.234C23 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).57(C2xQ8) | 288,747 |
(C3×C6).58(C2×Q8) = C2×C6.Dic6 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).58(C2xQ8) | 288,780 |
(C3×C6).59(C2×Q8) = C62⋊10Q8 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).59(C2xQ8) | 288,781 |
(C3×C6).60(C2×Q8) = C2×C12⋊Dic3 | φ: C2×Q8/C2×C4 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).60(C2xQ8) | 288,782 |
(C3×C6).61(C2×Q8) = C3×Dic6⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).61(C2xQ8) | 288,658 |
(C3×C6).62(C2×Q8) = C3×C12⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).62(C2xQ8) | 288,659 |
(C3×C6).63(C2×Q8) = C3×Dic3.Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).63(C2xQ8) | 288,660 |
(C3×C6).64(C2×Q8) = C3×S3×C4⋊C4 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).64(C2xQ8) | 288,662 |
(C3×C6).65(C2×Q8) = C3×D6⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).65(C2xQ8) | 288,667 |
(C3×C6).66(C2×Q8) = C3×C4.D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).66(C2xQ8) | 288,668 |
(C3×C6).67(C2×Q8) = C3×Dic3⋊Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).67(C2xQ8) | 288,715 |
(C3×C6).68(C2×Q8) = C3×Q8×Dic3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).68(C2xQ8) | 288,716 |
(C3×C6).69(C2×Q8) = C3×D6⋊3Q8 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 96 | | (C3xC6).69(C2xQ8) | 288,717 |
(C3×C6).70(C2×Q8) = C62.231C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).70(C2xQ8) | 288,744 |
(C3×C6).71(C2×Q8) = C62.233C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).71(C2xQ8) | 288,746 |
(C3×C6).72(C2×Q8) = C4⋊C4×C3⋊S3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).72(C2xQ8) | 288,748 |
(C3×C6).73(C2×Q8) = C62.240C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).73(C2xQ8) | 288,753 |
(C3×C6).74(C2×Q8) = C12.31D12 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).74(C2xQ8) | 288,754 |
(C3×C6).75(C2×Q8) = C62.259C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).75(C2xQ8) | 288,801 |
(C3×C6).76(C2×Q8) = Q8×C3⋊Dic3 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 288 | | (C3xC6).76(C2xQ8) | 288,802 |
(C3×C6).77(C2×Q8) = C62.261C23 | φ: C2×Q8/Q8 → C2 ⊆ Aut C3×C6 | 144 | | (C3xC6).77(C2xQ8) | 288,803 |
(C3×C6).78(C2×Q8) = C4⋊C4×C3×C6 | central extension (φ=1) | 288 | | (C3xC6).78(C2xQ8) | 288,813 |
(C3×C6).79(C2×Q8) = Q8×C3×C12 | central extension (φ=1) | 288 | | (C3xC6).79(C2xQ8) | 288,816 |
(C3×C6).80(C2×Q8) = C32×C22⋊Q8 | central extension (φ=1) | 144 | | (C3xC6).80(C2xQ8) | 288,819 |
(C3×C6).81(C2×Q8) = C32×C42.C2 | central extension (φ=1) | 288 | | (C3xC6).81(C2xQ8) | 288,822 |
(C3×C6).82(C2×Q8) = C32×C4⋊Q8 | central extension (φ=1) | 288 | | (C3xC6).82(C2xQ8) | 288,825 |