Extensions 1→N→G→Q→1 with N=C6 and Q=C2×Dic6

Direct product G=N×Q with N=C6 and Q=C2×Dic6
dρLabelID
C2×C6×Dic696C2xC6xDic6288,988

Semidirect products G=N:Q with N=C6 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C61(C2×Dic6) = C2×S3×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6:1(C2xDic6)288,942
C62(C2×Dic6) = C22×C322Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6:2(C2xDic6)288,975
C63(C2×Dic6) = C22×C324Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6:3(C2xDic6)288,1003

Non-split extensions G=N.Q with N=C6 and Q=C2×Dic6
extensionφ:Q→Aut NdρLabelID
C6.1(C2×Dic6) = Dic35Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.1(C2xDic6)288,485
C6.2(C2×Dic6) = C62.9C23φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.2(C2xDic6)288,487
C6.3(C2×Dic6) = C62.10C23φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.3(C2xDic6)288,488
C6.4(C2×Dic6) = Dic3×Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.4(C2xDic6)288,490
C6.5(C2×Dic6) = Dic36Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.5(C2xDic6)288,492
C6.6(C2×Dic6) = Dic3.Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.6(C2xDic6)288,493
C6.7(C2×Dic6) = C62.16C23φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.7(C2xDic6)288,494
C6.8(C2×Dic6) = D6⋊Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.8(C2xDic6)288,499
C6.9(C2×Dic6) = D66Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.9(C2xDic6)288,504
C6.10(C2×Dic6) = D67Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.10(C2xDic6)288,505
C6.11(C2×Dic6) = Dic3⋊Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.11(C2xDic6)288,514
C6.12(C2×Dic6) = C62.37C23φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.12(C2xDic6)288,515
C6.13(C2×Dic6) = S3×Dic3⋊C4φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.13(C2xDic6)288,524
C6.14(C2×Dic6) = D61Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.14(C2xDic6)288,535
C6.15(C2×Dic6) = S3×C4⋊Dic3φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.15(C2xDic6)288,537
C6.16(C2×Dic6) = D62Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.16(C2xDic6)288,541
C6.17(C2×Dic6) = D63Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.17(C2xDic6)288,544
C6.18(C2×Dic6) = D64Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.18(C2xDic6)288,547
C6.19(C2×Dic6) = C123Dic6φ: C2×Dic6/Dic6C2 ⊆ Aut C696C6.19(C2xDic6)288,566
C6.20(C2×Dic6) = C62.39C23φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.20(C2xDic6)288,517
C6.21(C2×Dic6) = C62.42C23φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.21(C2xDic6)288,520
C6.22(C2×Dic6) = C4×C322Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.22(C2xDic6)288,565
C6.23(C2×Dic6) = C12⋊Dic6φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.23(C2xDic6)288,567
C6.24(C2×Dic6) = C623Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C648C6.24(C2xDic6)288,612
C6.25(C2×Dic6) = C2×Dic3⋊Dic3φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.25(C2xDic6)288,613
C6.26(C2×Dic6) = C2×C62.C22φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C696C6.26(C2xDic6)288,615
C6.27(C2×Dic6) = C624Q8φ: C2×Dic6/C2×Dic3C2 ⊆ Aut C648C6.27(C2xDic6)288,630
C6.28(C2×Dic6) = C4×Dic18φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.28(C2xDic6)288,78
C6.29(C2×Dic6) = C362Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.29(C2xDic6)288,79
C6.30(C2×Dic6) = C36.6Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.30(C2xDic6)288,80
C6.31(C2×Dic6) = C222Dic18φ: C2×Dic6/C2×C12C2 ⊆ Aut C6144C6.31(C2xDic6)288,88
C6.32(C2×Dic6) = C36⋊Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.32(C2xDic6)288,98
C6.33(C2×Dic6) = C36.3Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.33(C2xDic6)288,100
C6.34(C2×Dic6) = C2×Dic9⋊C4φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.34(C2xDic6)288,133
C6.35(C2×Dic6) = C36.49D4φ: C2×Dic6/C2×C12C2 ⊆ Aut C6144C6.35(C2xDic6)288,134
C6.36(C2×Dic6) = C2×C4⋊Dic9φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.36(C2xDic6)288,135
C6.37(C2×Dic6) = C22×Dic18φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.37(C2xDic6)288,352
C6.38(C2×Dic6) = C4×C324Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.38(C2xDic6)288,725
C6.39(C2×Dic6) = C126Dic6φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.39(C2xDic6)288,726
C6.40(C2×Dic6) = C12.25Dic6φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.40(C2xDic6)288,727
C6.41(C2×Dic6) = C626Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6144C6.41(C2xDic6)288,735
C6.42(C2×Dic6) = C122Dic6φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.42(C2xDic6)288,745
C6.43(C2×Dic6) = C62.234C23φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.43(C2xDic6)288,747
C6.44(C2×Dic6) = C2×C6.Dic6φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.44(C2xDic6)288,780
C6.45(C2×Dic6) = C6210Q8φ: C2×Dic6/C2×C12C2 ⊆ Aut C6144C6.45(C2xDic6)288,781
C6.46(C2×Dic6) = C2×C12⋊Dic3φ: C2×Dic6/C2×C12C2 ⊆ Aut C6288C6.46(C2xDic6)288,782
C6.47(C2×Dic6) = C12×Dic6central extension (φ=1)96C6.47(C2xDic6)288,639
C6.48(C2×Dic6) = C3×C122Q8central extension (φ=1)96C6.48(C2xDic6)288,640
C6.49(C2×Dic6) = C3×C12.6Q8central extension (φ=1)96C6.49(C2xDic6)288,641
C6.50(C2×Dic6) = C3×Dic3.D4central extension (φ=1)48C6.50(C2xDic6)288,649
C6.51(C2×Dic6) = C3×C12⋊Q8central extension (φ=1)96C6.51(C2xDic6)288,659
C6.52(C2×Dic6) = C3×C4.Dic6central extension (φ=1)96C6.52(C2xDic6)288,661
C6.53(C2×Dic6) = C6×Dic3⋊C4central extension (φ=1)96C6.53(C2xDic6)288,694
C6.54(C2×Dic6) = C3×C12.48D4central extension (φ=1)48C6.54(C2xDic6)288,695
C6.55(C2×Dic6) = C6×C4⋊Dic3central extension (φ=1)96C6.55(C2xDic6)288,696

׿
×
𝔽