extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(C2×Dic6) = Dic3⋊5Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.1(C2xDic6) | 288,485 |
C6.2(C2×Dic6) = C62.9C23 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.2(C2xDic6) | 288,487 |
C6.3(C2×Dic6) = C62.10C23 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.3(C2xDic6) | 288,488 |
C6.4(C2×Dic6) = Dic3×Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.4(C2xDic6) | 288,490 |
C6.5(C2×Dic6) = Dic3⋊6Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.5(C2xDic6) | 288,492 |
C6.6(C2×Dic6) = Dic3.Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.6(C2xDic6) | 288,493 |
C6.7(C2×Dic6) = C62.16C23 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.7(C2xDic6) | 288,494 |
C6.8(C2×Dic6) = D6⋊Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.8(C2xDic6) | 288,499 |
C6.9(C2×Dic6) = D6⋊6Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.9(C2xDic6) | 288,504 |
C6.10(C2×Dic6) = D6⋊7Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.10(C2xDic6) | 288,505 |
C6.11(C2×Dic6) = Dic3⋊Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.11(C2xDic6) | 288,514 |
C6.12(C2×Dic6) = C62.37C23 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.12(C2xDic6) | 288,515 |
C6.13(C2×Dic6) = S3×Dic3⋊C4 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.13(C2xDic6) | 288,524 |
C6.14(C2×Dic6) = D6⋊1Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.14(C2xDic6) | 288,535 |
C6.15(C2×Dic6) = S3×C4⋊Dic3 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.15(C2xDic6) | 288,537 |
C6.16(C2×Dic6) = D6⋊2Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.16(C2xDic6) | 288,541 |
C6.17(C2×Dic6) = D6⋊3Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.17(C2xDic6) | 288,544 |
C6.18(C2×Dic6) = D6⋊4Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.18(C2xDic6) | 288,547 |
C6.19(C2×Dic6) = C12⋊3Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C6 | 96 | | C6.19(C2xDic6) | 288,566 |
C6.20(C2×Dic6) = C62.39C23 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.20(C2xDic6) | 288,517 |
C6.21(C2×Dic6) = C62.42C23 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.21(C2xDic6) | 288,520 |
C6.22(C2×Dic6) = C4×C32⋊2Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.22(C2xDic6) | 288,565 |
C6.23(C2×Dic6) = C12⋊Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.23(C2xDic6) | 288,567 |
C6.24(C2×Dic6) = C62⋊3Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.24(C2xDic6) | 288,612 |
C6.25(C2×Dic6) = C2×Dic3⋊Dic3 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.25(C2xDic6) | 288,613 |
C6.26(C2×Dic6) = C2×C62.C22 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 96 | | C6.26(C2xDic6) | 288,615 |
C6.27(C2×Dic6) = C62⋊4Q8 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C6 | 48 | | C6.27(C2xDic6) | 288,630 |
C6.28(C2×Dic6) = C4×Dic18 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.28(C2xDic6) | 288,78 |
C6.29(C2×Dic6) = C36⋊2Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.29(C2xDic6) | 288,79 |
C6.30(C2×Dic6) = C36.6Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.30(C2xDic6) | 288,80 |
C6.31(C2×Dic6) = C22⋊2Dic18 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.31(C2xDic6) | 288,88 |
C6.32(C2×Dic6) = C36⋊Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.32(C2xDic6) | 288,98 |
C6.33(C2×Dic6) = C36.3Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.33(C2xDic6) | 288,100 |
C6.34(C2×Dic6) = C2×Dic9⋊C4 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.34(C2xDic6) | 288,133 |
C6.35(C2×Dic6) = C36.49D4 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.35(C2xDic6) | 288,134 |
C6.36(C2×Dic6) = C2×C4⋊Dic9 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.36(C2xDic6) | 288,135 |
C6.37(C2×Dic6) = C22×Dic18 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.37(C2xDic6) | 288,352 |
C6.38(C2×Dic6) = C4×C32⋊4Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.38(C2xDic6) | 288,725 |
C6.39(C2×Dic6) = C12⋊6Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.39(C2xDic6) | 288,726 |
C6.40(C2×Dic6) = C12.25Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.40(C2xDic6) | 288,727 |
C6.41(C2×Dic6) = C62⋊6Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.41(C2xDic6) | 288,735 |
C6.42(C2×Dic6) = C12⋊2Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.42(C2xDic6) | 288,745 |
C6.43(C2×Dic6) = C62.234C23 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.43(C2xDic6) | 288,747 |
C6.44(C2×Dic6) = C2×C6.Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.44(C2xDic6) | 288,780 |
C6.45(C2×Dic6) = C62⋊10Q8 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 144 | | C6.45(C2xDic6) | 288,781 |
C6.46(C2×Dic6) = C2×C12⋊Dic3 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C6 | 288 | | C6.46(C2xDic6) | 288,782 |
C6.47(C2×Dic6) = C12×Dic6 | central extension (φ=1) | 96 | | C6.47(C2xDic6) | 288,639 |
C6.48(C2×Dic6) = C3×C12⋊2Q8 | central extension (φ=1) | 96 | | C6.48(C2xDic6) | 288,640 |
C6.49(C2×Dic6) = C3×C12.6Q8 | central extension (φ=1) | 96 | | C6.49(C2xDic6) | 288,641 |
C6.50(C2×Dic6) = C3×Dic3.D4 | central extension (φ=1) | 48 | | C6.50(C2xDic6) | 288,649 |
C6.51(C2×Dic6) = C3×C12⋊Q8 | central extension (φ=1) | 96 | | C6.51(C2xDic6) | 288,659 |
C6.52(C2×Dic6) = C3×C4.Dic6 | central extension (φ=1) | 96 | | C6.52(C2xDic6) | 288,661 |
C6.53(C2×Dic6) = C6×Dic3⋊C4 | central extension (φ=1) | 96 | | C6.53(C2xDic6) | 288,694 |
C6.54(C2×Dic6) = C3×C12.48D4 | central extension (φ=1) | 48 | | C6.54(C2xDic6) | 288,695 |
C6.55(C2×Dic6) = C6×C4⋊Dic3 | central extension (φ=1) | 96 | | C6.55(C2xDic6) | 288,696 |